2,977 research outputs found

    On Quantum Statistical Inference, I

    Full text link
    Recent developments in the mathematical foundations of quantum mechanics have brought the theory closer to that of classical probability and statistics. On the other hand, the unique character of quantum physics sets many of the questions addressed apart from those met classically in stochastics. Furthermore, concurrent advances in experimental techniques and in the theory of quantum computation have led to a strong interest in questions of quantum information, in particular in the sense of the amount of information about unknown parameters in given observational data or accessible through various possible types of measurements. This scenery is outlined (with an audience of statisticians and probabilists in mind).Comment: A shorter version containing some different material will appear (2003), with discussion, in J. Roy. Statist. Soc. B, and is archived as quant-ph/030719

    Stochastic Calculus for Assets with Non-Gaussian Price Fluctuations

    Full text link
    From the path integral formalism for price fluctuations with non-Gaussian distributions I derive the appropriate stochastic calculus replacing Ito's calculus for stochastic fluctuations.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/32

    Likelihood inference for exponential-trawl processes

    Full text link
    Integer-valued trawl processes are a class of serially correlated, stationary and infinitely divisible processes that Ole E. Barndorff-Nielsen has been working on in recent years. In this Chapter, we provide the first analysis of likelihood inference for trawl processes by focusing on the so-called exponential-trawl process, which is also a continuous time hidden Markov process with countable state space. The core ideas include prediction decomposition, filtering and smoothing, complete-data analysis and EM algorithm. These can be easily scaled up to adapt to more general trawl processes but with increasing computation efforts.Comment: 29 pages, 6 figures, forthcoming in: "A Fascinating Journey through Probability, Statistics and Applications: In Honour of Ole E. Barndorff-Nielsen's 80th Birthday", Springer, New Yor

    Absolute Moments of Generalized Hyperbolic Distributions and Approximate Scaling of Normal Inverse Gaussian Lévy-Processes

    Get PDF
    Expressions for (absolute) moments of generalized hyperbolic (GH) and normal inverse Gaussian (NIG) laws are given in terms of moments of the corresponding symmetric laws. For the (absolute) moments centered at the location parameter mu explicit expressions as series containing Bessel functions are provided. Furthermore the derivatives of the logarithms of (absolute) mu-centered moments with respect to the logarithm of time are calculated explicitly for NIG Levy processes. Computer implementation of the formulae obtained is briefly discussed. Finally some further insight into the apparent scaling behaviour of NIG Levy processes (previously discussed in Barndorff-Nielsen and Prause (2001)) is gained

    Multipower Variation and Stochastic Volatility

    Get PDF
    In this brief note we review some of our recent results on the use of high frequency financial data to estimate objects like integrated variance in stochastic volatility models. Interesting issues include multipower variation, jumps and market microstructure effects.

    Probability measures, L\'{e}vy measures and analyticity in time

    Full text link
    We investigate the relation of the semigroup probability density of an infinite activity L\'{e}vy process to the corresponding L\'{e}vy density. For subordinators, we provide three methods to compute the former from the latter. The first method is based on approximating compound Poisson distributions, the second method uses convolution integrals of the upper tail integral of the L\'{e}vy measure and the third method uses the analytic continuation of the L\'{e}vy density to a complex cone and contour integration. As a by-product, we investigate the smoothness of the semigroup density in time. Several concrete examples illustrate the three methods and our results.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6114 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Econometrics of testing for jumps in financial economics using bipower variation

    Get PDF
    In this paper we provide an asymptotic distribution theory for some non-parametric tests of the hypothesis that asset prices have continuous sample paths. We study the behaviour of the tests using simulated data and see that certain versions of the tests have good finite sample behaviour. We also apply the tests to exchange rate data and show that the null of a continuous sample path is frequently rejected. Most of the jumps the statistics identify are associated with governmental macroeconomic announcements.Bipower variation; Jump process; Quadratic variation; Realised variance; emimartingales; Stochastic volatility.

    How accurate is the asymptotic approximation to the distribution of realised volatility?

    Get PDF
    In this paper we study the reliability of the mixed normal asymptotic distribution of realised volatility error, which we have previously derived using the theory of realised power variation. Our experiments suggests that the asymptotics is reliable when we work with the logarithmic transform of the realised volatility.Levy process; Mixed Gaussian limit; OU process; Quadratic variation; Realised power variation; Realised volatility; Square root process; Stochastic volatility; Superposition.
    corecore