
Barndorff-Nielsen, Stelzer:

Absolute Moments of Generalized Hyperbolic
Distributions and Approximate Scaling of Normal
Inverse Gaussian Lévy-Processes

Sonderforschungsbereich 386, Paper 381 (2004)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12162797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/


Absolute Moments of Generalized Hyperbolic
Distributions and Approximate Scaling of Normal

Inverse Gaussian Lévy-Processes

Ole Eiler Barndorff-Nielsen∗ Robert Stelzer †

April 25, 2004

Abstract

Expressions for (absolute) moments of generalized hyperbolic (GH) and normal
inverse Gaussian (NIG) laws are given in terms of moments of the corresponding
symmetric laws. For the (absolute) moments centered at the location parameter μ
explicit expressions as series containing Bessel functions are provided.

Furthermore the derivatives of the logarithms of (absolute) μ–centered moments
with respect to the logarithm of time are calculated explicitly for NIG Lévy processes.
Computer implementation of the formulae obtained is briefly discussed. Finally some
further insight into the apparent scaling behaviour of NIG Lévy processes (previously
discussed in Barndorff-Nielsen and Prause (2001)) is gained.
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1 Introduction

In recent years many authors have successfully fitted generalized hyperbolic (GH)
distributions and in particular normal inverse Gaussian (NIG) laws to returns in
financial time series; see Eberlein and Keller (1995), Prause (1997), Barndorff-Nielsen
(1997), Prause (1999), Barndorff-Nielsen and Shephard (2001) and references therein,
Schoutens (2003), Barndorff-Nielsen and Shephard (2005). Moreover, Barndorff-
Nielsen, Blæsild and Schmiegel (2004) recently demonstrated (following an indication
in Barndorff-Nielsen (1998a)) that the NIG law is capable of describing velocity data
from turbulence experiments with high accuracy.

This has, in particular, led to modeling the time dynamics of financial mar-
kets by stochastic processes using generalized hyperbolic or normal inverse Gaussian
laws and associated Lévy processes as building blocks (e.g. Rydberg (1997), Bibby
and Sørensen (1997), Barndorff-Nielsen (1998b), Rydberg (1999), Prause (1999),
Raible (2000), Barndorff-Nielsen and Shephard (2001, 2005) and references therein,
Barndorff-Nielsen (2001), Eberlein (2001), Schoutens (2003), Cont and Tankov (2004)
and Emmer and Klüppelberg (2004)).

Empirical studies of financial data from the foreign exchange markets have regu-
larly reported that the absolute moments of returns exhibit a power scaling behaviour,
see e.g. Müller, Dacorogna, Olsen, Pictet, Schwarz and Morgenegg (1990) and Guil-
laume, Dacorogna, Davé, Müller, Olsen and Pictet (1997). Barndorff-Nielsen and
Prause (2001) found that the power scaling coefficients obtained in these empirical
studies are well within the range to be expected under a NIG Lévy process. In their
article they solely studied the first absolute moment and obtained analytic results
only in the case of a symmetric NIG Lévy process, i.e. when the parameter β is
zero (for the parametrization of the NIG law see below). In this paper we generalize
their findings to the skewed case. We start by deriving formulae for the (absolute)
moments of the generalized hyperbolic distribution in terms of mixed moments of
the corresponding symmetric GH law. For μ–centered (absolute) moments, i.e. mo-
ments centered at the location parameter μ, we are able to give explicit formulae
using Bessel functions. From these general formulae we will then, as special cases,
obtain formulae for the moments of the NIG law, resp. NIG Lévy process. Analytic
results for the approximate power scaling are then obtained, expressed as the deriva-
tive of the logarithm of the μ–centered absolute moments of the NIG Lévy process
with respect to the logarithm of time. Based upon this we derive some asymptotic
scaling properties for t→ ∞ and 0.

In the final sections we will discuss the numerical implementation of the formulae
obtained and give a numerical example for the apparent power scaling present in NIG
Lévy processes fitted to real financial data (the US-Dollar/Deutsch Mark exchange
rate).
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2 Generalized hyperbolic and inverse Gaussian

distributions

We consider the class of one-dimensional generalized hyperbolic (GH) distributions.
The GH laws were introduced in Barndorff-Nielsen (1977) and Barndorff-Nielsen
(1978a). For some recent results see Prause (1999), Eberlein (2001) and Eberlein
and Hammerstein (2002). We denote the generalized hyperbolic distribution by
GH(ν, α, β, μ, δ). The probability density is given by:

p(x; ν, α, β, μ, δ) =
γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
eβ(x−μ) (1)

for x ∈ R where the parameters satisfy ν ∈ R, 0 ≤ |β| < α, μ ∈ R, δ ∈ R>0, and
γ :=

√
α2 − β2, ᾱ := δα, β̄ := δβ, γ̄ := δγ.

Furthermore, Kν(·) denotes the modified Bessel function of the third kind and
order ν ∈ R. For a comprehensive discussion of Bessel functions of complex argu-
ments see Watson (1952). Jørgensen (1982) contains an appendix listing important
properties of Bessel functions of the third kind and related functions. Most of these
properties can also be found in standard reference books like Gradshteyn and Ryzhik
(1965) or Bronstein, Semendjaev, Mühlig and Musiol (2000). For the following we
need to know that Kν is defined on the positive half plane D = {z ∈ C : �(z) > 0}
of the complex numbers and is holomorphic on D. From Watson (1952, p. 182) or
Jørgensen (1982, p. 170) we have the representation

Kν(z) =
1
2

∫ ∞

0
yν−1e−

1
2
z(y+y−1)dy, (2)

which shows the strict positivity of Kν on R>0. The substitution x := y−1 immedi-
ately gives K−ν = Kν . Furthermore, Kν(z) is obviously monotonically decreasing in
z on R>0. From the alternative representation

Kν(z) =
∫ ∞

0
e−z cosh(t) cosh(νt)dt (3)

(cf. Watson (1952, p. 181)) one reads off that, for fixed z ∈ R>0, Kν(z) is strictly
increasing in ν for ν ∈ R≥0 .

A very useful representation in law of the generalized hyperbolic distribution can
be given using the generalized inverse Gaussian distribution. The generalized inverse
Gaussian distribution GIG(ν, δ, γ) with parameters ν ∈ R, γ, δ ∈ R≥0 and γ + δ > 0
is the distribution on R>0 which has probability density function

p(x; ν, δ, γ) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−1

2
(δ2x−1 + γ2x)

)

=
γ̄ν

2Kν(γ̄)
δ−2νxν−1 exp

(
−1

2
(δ2x−1 + γ̄2δ−2x)

)
. (4)
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For more information on the GIG law we refer to Jørgensen (1982) and for an in-
terpretation in terms of hitting times to Barndorff-Nielsen, Blæsild and Halgreen
(1978). The following normal variance-mean mixture representation of the general-
ized hyperbolic law holds.

Lemma 1 Let X ∼ GH(ν, α, β, μ, δ), V ∼ GIG(ν, δ, γ) with γ =
√
α2 − β2 and

ε ∼ N(0, 1), where V and ε are independent, then:

X
D= μ+ βV +

√
V ε

(For a general overview over normal variance-mean mixtures see Barndorff-Nielsen,
Kent and Sørensen (1982).)

Furthermore, the cumulant function of the generalized hyperbolic law X ∼ GH(ν,
α, β, μ, δ) is given by

K(θ ‡X) =
ν

2
log
(

γ

α2 − (β + θ)2

)
+ log

⎛
⎝Kν

(
δ
√
α2 − (β + θ)2

)
Kν

(
δ
√
α2 − β2

)
⎞
⎠+ θμ. (5)

Obviously K(θ ‡X) is defined for all θ ∈ R with |β + θ| < α. From this fact and
Barndorff-Nielsen (1978b, Corollary 7.1) we immediately obtain:

Lemma 2 Assume X ∼ GH(ν, α, β, μ, δ). Then X ∈ Lp for all p > 0, i.e. E(|X|p)
exists for all p > 0.

3 Expressing moments via moments of sym-

metric GH laws

In this section we give expressions for different (absolute) moments of arbitrary GH
distributions in terms of moments of corresponding symmetric GH distributions.
Based upon this we obtain explicit expressions for μ-centered (absolute) moments of
GH distributions, employing the variance-mean mixture representation.

Theorem 3 Let X ∼ GH(ν, α, β, μ, δ), Y ∼ GH(ν, α, 0, μ, δ), then for every r > 0
and n ∈ N:

(i) E(Xn) =
( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∞∑
k=0

βk

k!
E(Y n(Y − μ)k)

(ii) E(|X|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∞∑
k=0

βk

k!
E(|Y |r(Y − μ)k)

(iii) E((X − μ)n) =
( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∞∑
k=0

β2k+m

(2k +m)!
E((Y − μ)2k+m+n)

(iv) E(|X − μ|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∞∑
k=0

β2k

(2k)!
E(|Y − μ|2k+r),

where m := nmod 2. All moments above are finite.
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Note that from the cumulant function we have E(Y ) = μ and E(X) = μ +
β δKν+1(γ̄)

γKν(γ̄) . Hence, we have that E((Y − μ)r) are central moments, whereas E((X −
μ)r) are in general just μ–centered moments. Note also that sgnE((X−μ)n)) = sgnβ
for all odd n.
Proof: We will only prove (ii), since the proofs of the other formulae proceed along
the same lines, except that to obtain (iii) and (iv) one notes in the final step that
odd central moments of Y vanish, since the distribution of Y is symmetric around μ.

The series representation of the exponential function gives

E(|X|r) =
∫

R

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
eβ(x−μ)|x|rdx

=
∫

R

∞∑
k=0

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
βk

k!
(x− μ)k|x|rdx.

The integrals exist (cf. Lemma 2) and the same is true with β changed to −β. This
implies that the integrals∫ ∞

μ

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
e|β(x−μ)||x|rdx

and∫ μ

−∞

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
e|β(x−μ)||x|rdx

and hence the integral∫
R

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
e|β(x−μ)||x|rdx

exist. Using the last one as majorant, Lebesgue’s convergence theorem gives

E(|X|r) =
∞∑

k=0

∫
R

γ̄νᾱ1/2−ν

√
2πδKν(γ̄)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
βk

k!
(x− μ)k|x|rdx

=
∞∑

k=0

βk

k!

( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∫
R

ᾱν ᾱ1/2−ν

√
2πδKν(ᾱ)

(
1 +

(x− μ)2

δ2

)ν/2−1/4

·Kν−1/2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
(x− μ)k|x|rdx.
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From this we immediately conclude

E(|X|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∞∑
k=0

βk

k!
E
(
|Y |r(Y − μ)k

)
. �

Corollary 4 Let X ∼ GH(ν, α, β, μ, δ), V ∼ GIG(ν, δ, α) and ε ∼ N(0, 1) with V
and ε independent, then for every r > 0 and n ∈ N:

(i) E((X − μ)n) =
( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∞∑
k=0

β2k+m

(2k +m)!
E
(
V k+(m+n)/2

)
E
(
ε2k+m+n

)

(ii) E(|X − μ|r) =
( γ̄
ᾱ

)ν Kν(ᾱ)
Kν(γ̄)

∞∑
k=0

β2k

(2k)!
E
(
V k+r/2

)
E
(
|ε|2k+r

)
,

where m := nmod 2.

Proof: Combine Theorem 3 with Lemma 1. �
Note that we obtain the (absolute) moments of X provided μ = 0 and the (ab-

solute) central moments if β = 0. For β = 0 the above series are in fact just a single
term or vanish completely.

Using the explicit expressions for the moments of GIG and normal laws, given in
the appendix, it is now straightforward to obtain more explicit expressions for the
μ–centered (absolute) moments of GH laws.

Theorem 5 Let X ∼ GH(ν, α, β, μ, δ), then for every r > 0 and n ∈ N:

(i) E((X − μ)n) =
2
n

2 �γ̄νδ2
 n
2 �βm

√
πKν(γ̄)ᾱν+
n

2 �
∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)
ᾱk(2k +m)!

Kν+k+
n
2 �(ᾱ)

(ii) E(|X − μ|r) =
2

r
2 γ̄νδr

√
πKν(γ̄)ᾱν+ r

2

∞∑
k=0

2kβ̄2kΓ
(
k + r

2 + 1
2

)
ᾱk(2k)!

Kν+k+ r
2
(ᾱ),

where m := nmod 2.

Proof: Combine Corollary 4 with Lemmas 12 and 13 noting that (n+m)mod 2 = 0
and (m+ n)/2 = (nmod 2 + n)/2 =

⌈
n
2

⌉
. �

The absolute convergence of the series on the right hand sides is obviously implied
by the finiteness of E((X − μ)n), resp. E(|X − μ|r), and the positivity of all terms
involved. Yet, one can also immediately give an analytic argument, which adds
further insight into the convergence behaviour and is useful when one implements the

above formulae on a computer (see section 6). Let ak :=
2kβ̄2kΓ(k+ r

2
+ 1

2)
ᾱk(2k)!

Kν+k+ r
2
(ᾱ).

From Kν(z) ∼ √
π
2 2ννν− 1

2 e−νz−ν for ν → ∞ (Ismail (1977), Jørgensen (1982, p.
171)) we obtain

ak+1

ak
∼

4β̄2
(
k + r

2 + 1
2

) (
k + ν + r

2

)(
1 + 1

k+ν+ r
2

)k+ν+ r+1
2

ᾱ2e(2k + 2)(2k + 1)
k→∞→

(
β̄

ᾱ

)2

< 1 (6)
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and thus the quotient criterion from standard analysis implies absolute convergence.
Lemma 9, which we later state when looking at NIG Lévy processes, and its proof
add some more insight into the behaviour of the series.

As a side result of Theorem 5 we also obtain two identities for modified Bessel
functions of the third kind.

Corollary 6 Let x, y, z ∈ R>0 s.t. z =
√
x2 − y2 and ν ∈ R then

(i) Kν(z) =
zν

xν

∞∑
k=0

1
2k · k!

y2k

xk
Kν+k(x)

(ii) zKν(z) + y2Kν+1(z) =
zν+1

xν

∞∑
k=0

2k + 1
2k · k!

y2k

xk
Kν+k(x).

Proof: Combine Theorem 5 with E(X) = δβ̄
γ̄

Kν+1(γ̄)
Kν(γ̄) and E(X2) = δ2

(
Kν+1(γ̄)
γ̄Kν(γ̄) +

β̄2

γ̄2
Kν+2(γ̄)
Kν(γ̄)

)
forX ∼ GH(ν, α, β, 0, δ) and use Γ(n+1/2) = (2n)!

√
π/(22n ·n!). Finally

identify x, y, z, ν with ᾱ, β̄, γ̄, ν + 1. �

4 Moments of NIG laws

A subclass of the generalized hyperbolic laws, which is closed under convolution,
is formed by the normal inverse Gaussian laws. For an overview see especially
Barndorff-Nielsen (1998b). The NIG(α, β, μ, δ) law with 0 ≤ |β| < α, μ ∈ R

and δ ∈ R>0 is the special case of the GH(ν, α, β, μ, δ) law given by ν = 1
2 . Hence

we can use the above calculations for (μ–centered) moments.

Corollary 7 Let X ∼ NIG(α, β, μ, δ), Y ∼ NIG(α, 0, μ, δ), then for every r > 0
and n ∈ N:

(i) E(Xn) = eγ̄−ᾱ
∞∑

k=0

βk

k!
E(Y n(Y − μ)k)

(ii) E(|X|r) = eγ̄−ᾱ
∞∑

k=0

βk

k!
E(|Y |r(Y − μ)k)

(iii) E((X − μ)n) =
2
n

2 �+ 1
2 δ2
 n

2 �βm

πᾱ
n
2 �− 1

2

eγ̄
∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)
ᾱk(2k +m)!

Kk+
n
2 �− 1

2
(ᾱ)

(iv) E(|X − μ|r) =
2

r+1
2 δr

πᾱ
r−1
2

eγ̄
∞∑

k=0

2kβ̄2kΓ
(
k + r+1

2

)
ᾱk(2k)!

Kk+ r−1
2

(ᾱ),

where m := nmod 2. All moments above are finite.

Proof: Follows immediately from Theorems 3 and 5 using K 1
2
(z) = K− 1

2
(z) =√

π
2 z

−1/2e−z (see e.g. Jørgensen (1982, p. 170)). �
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Formulae (iii) and (iv) for r equal to an even natural number can be given more
explicitly using

Kn+ 1
2
(z) = K 1

2
(z)

(
1 +

n∑
i=1

(n+ i)!
i!(n − i)!

2−iz−i

)
(7)

for all n ∈ N (see e.g. Jørgensen (1982, p. 170)). But in order to avoid making the
above formulae even more complex, we omit this.

5 Moments of NIG Lévy processes and their

time-wise behaviour

Based on the above results our aim now is to generalize the findings of Barndorff-
Nielsen and Prause (2001) regarding the time-wise approximate scaling behaviour of
NIG Lévy processes.

5.1 Moments of NIG Lévy processes

Let Z(t), t ∈ R>0, be the NIG(α, β, μ, δ) Lévy process, i.e. Z(1) ∼ NIG(α, β, μ, δ).
The generalized hyperbolic distribution is infinitely divisible and hence for every GH
law there is a Lévy process having it as marginal distribution at time one. However,
for GH Lévy processes we do, in general, not know the marginal distribution at an
arbitrary time t, whereas for NIG Lévy processes we have Z(t) ∼ NIG(α, β, tμ, tδ).
For more background on NIG Lévy processes see in particular Barndorff-Nielsen
(1998b). From our previous results we can immediately infer:

Corollary 8 Let Z(t), t ∈ R>0, be a NIG(α, β, μ, δ) Lévy process, then for every
r > 0 and n ∈ N:

(i) E((Z(t) − μt)n) =
2
n

2 �+ 1
2 δ2
 n

2 �βm

πᾱ
n
2 �− 1

2

etγ̄
∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)
ᾱk(2k +m)!

tk+
n
2 �+ 1

2

·Kk+
n
2 �− 1

2
(tᾱ)

(ii) E(|Z(t) − μt|r) =
2

r+1
2 δr

πᾱ
r−1
2

etγ̄
∞∑

k=0

2kβ̄2kΓ
(
k + r+1

2

)
ᾱk(2k)!

tk+(r+1)/2Kk+ r−1
2

(tᾱ)

where m := nmod 2.

The following lemma, which shows that the moments above are analytic functions
of time, is later needed to calculate derivatives of log moments.

Lemma 9 Let ᾱ > 0, |β̄| < ᾱ, 1 < ε < ᾱ2/|β̄|2, ν ∈ R, r > 0, n ∈ N, m = nmod 2,
D = {z ∈ C : �(z) > 0, |z| < ε�(z)},

f : D → C, z �→
∞∑

k=0

2kβ̄2kΓ
(
k + r

2 + 1
2

)
ᾱk(2k)!

zk+(r+1)/2Kν+k+ r
2
(zᾱ)

8



and

g : D → C, z �→
∞∑

k=0

2kβ̄2kΓ
(
k +

⌈
n
2

⌉
+ 1

2

)
ᾱk(2k +m)!

zk+
n
2 �+ 1

2Kν+k+
n
2 �(zᾱ).

Then both series are locally uniformly convergent and f , g are holomorphic on D.

Note that ν is −1/2 in the series of Corollary 8.
Proof: It is sufficient to show the locally uniform convergence, since this implies the
holomorphicity via Weierstraß’s convergence theorem for sequences of holomorphic
functions (see some standard book on complex function theory, e.g. Freitag and
Busam (2000, p. 100)). Furthermore it is obvious that the result for g follows from
the one for f .

Let us now prove the uniform convergence of the series f(z) =
∑∞

k=0 fk(z) on
D ∩ {z ∈ C : a < �(z) < b} for arbitrary 0 < a < b < ∞, where fk(z) =
2kβ̄2kΓ(k+ r

2
+ 1

2)
ᾱk(2k)!

zk+(r+1)/2Kν+k+ r
2
(zᾱ). An immediate consequence of the integral rep-

resentation for Kν given in (2) is |Kν(z)| ≤ Kν(�(z)) for z ∈ D and thus

|fk(z)| =

∣∣∣∣∣2
kβ̄2kΓ

(
k + r

2 + 1
2

)
ᾱk(2k)!

zk+(r+1)/2Kν+k+ r
2
(zᾱ)

∣∣∣∣∣
≤ 2k|β̄|2kΓ

(
k + r

2 + 1
2

)
ᾱk(2k)!

(ε�(z))k+(r+1)/2Kν+k+ r
2
(�(z)ᾱ)

x:=�(z)

≤ 2k|β̄|2kΓ
(
k + r

2 + 1
2

)
ᾱk(2k)!

(εx)k+(r+1)/2Kν+ r
2
+k(xᾱ)

for all k ∈ N0. Note that we defined x ∈ (a, b) to be the real part of z. Using
K ′

ν(z) = −Kν−1(z) − νz−1Kν(z) (see e.g. Jørgensen (1982, p. 170) or Bronstein
et al. (2000, p. 528)) we obtain

d

dx
xk+ν+ r

2Kν+ r
2
+k(xᾱ) = −ᾱxk+ν+ r

2Kν+ r
2
+k−1(xᾱ) < 0.

This implies for x ∈ (a, b):

xk+(r+1)/2Kν+ r
2
+k(xᾱ) ≤ dak+(r+1)/2Kν+ r

2
+k(aᾱ)

where d := aν− 1
2 ·max{a−ν+ 1

2 , b−ν+ 1
2 }. Applying this inequality to the above expres-

sion, we get for all k ∈ N0

|fk(z)|≤
2kd|β̄|2kΓ

(
k + r

2 + 1
2

)
ᾱk(2k)!

(εa)k+(r+1)/2Kν+ r
2
+k(aᾱ).

From the finiteness of the r
2 th absolute moment of the GH(ν, aᾱ, a|β̄|√ε, 0, 1) law

and Theorem 5 follows that
∞∑

k=0

2kd|β̄|2kΓ
(
k + r

2 + 1
2

)
ᾱk(2k)!

(εa)k+(r+1)/2Kν+ r
2
+k(aᾱ)

= d(εa)
r+1
2

∞∑
k=0

2k(|β̄|a√ε)2kΓ
(
k + r

2 + 1
2

)
(aᾱ)k(2k)!

Kν+ r
2
+k(aᾱ)

converges absolutely. Hence, the uniform convergence of
∑∞

k=0 |fk(z)| on D ∩ {z ∈
C : a < �(z) < b} is established. �
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5.2 Scaling and apparent scaling

Before we now turn to discussing the scaling properties of an NIG Lévy process, let
us briefly state what scaling precisely means. Let X(t) be some stochastic process.
We say some moment of X obeys a scaling law, if the logarithm of this moment is an
affine function of log time i.e., for the r-th absolute moment, lnE(|X(t)|r) = s ln t+c
for some constants s, c ∈ R. Here s is called the scaling coefficient. If all (absolute)
moments of X, or at least those one is interested in, follow a scaling law, we say
that the process itself obeys one. For example in the case of Brownian motion
X(t) with drift μ we know from X(t)−μt

D=
√
t(X(1)−μ) that lnE(|X(t)−μt|r) =

r
2 ln t+constant for all r > 0, i.e. all absolute moments exhibit scaling. More generally
all selfsimilar processes, e.g. the strictly α-stable Lévy processes (cf. Samorodnitsky
and Taqqu (1994, chapter 7) and Sato (1999, chapter 3)), obey a scaling law. When
looking only at small changes in time the local scaling behaviour is determined by
d lnE(|X(t)|r)

d ln t (in the case of the r-th absolute moment). In the presence of scaling the
latter derivative is constant and equals the value of the scaling coefficient. Provided
some log moment of a process X(t) exhibits a very close to affine dependence on
log time over some time horizon of interest, we speak of approximate or apparent
scaling. This is equivalent to the local scaling behaviour varying only little over
the time spans considered. When working with real empirical data, it is often not
possible to distinguish between apparent and strict scaling due to the randomness of
the available observations. Hence, it may be of interest, from a statistical point of
view, whether some given process shows approximate scaling.

5.3 The time-wise behaviour of µ-centered moments

Let us now examine the scaling behaviour exhibited by the NIG(α, β, μ, δ) Lévy
process Z(t). For the following discussion of the time dependence of E(|Z(t) − μt|r)
we will abbreviate the time independent terms:

c(r) :=
2

r+1
2 δr

πᾱ
r−1
2

(8)

ak(r) :=
2kβ̄2kΓ

(
k + r+1

2

)
ᾱk(2k)!

(9)

If we define

ψ(t) := exp(tγ̄)
∞∑

k=0

ak(r)tk+(r+1)/2Kk+(r−1)/2(tᾱ) (10)

and
φ(t) := lnψ(et), (11)

we have from Corollary 8 that

E(|Z(t) − μt|r) = c(r) · ψ(t) (12)

10



and
lnE(|Z(t) − μt|r) = ln c(r) + φ(ln t). (13)

Thus:
d lnE(|Z(t) − μt|r)

d ln t
= φ′(ln t) (14)

Lemma 10 Let φ : R>0 → R be defined by (11), then

φ′(t) = 1 + γ̄et − ᾱet

∞∑
k=0

ak(r)etkKk+(r−3)/2(etᾱ)

∞∑
k=0

ak(r)etkKk+(r−1)/2(etᾱ)
. (15)

Proof: Using again K ′
ν(z) = −Kν−1(z)− νz−1Kν(z), we obtain for ψ(t) as defined

in equation (10):

ψ′(t) = exp(tγ̄)

(
γ̄

∞∑
k=0

ak(r)tk+(r+1)/2Kk+(r−1)/2(tᾱ) +
∞∑

k=0

ak(r)
(
k +

r + 1
2

)

·tk+(r−1)/2Kk+(r−1)/2(tᾱ) −
∞∑

k=0

ak(r)tk+(r+1)/2ᾱ

·
(
Kk+(r−3)/2(tᾱ) +

(
k +

r − 1
2

)
(tᾱ)−1Kk+ r−1

2
(tᾱ)

))

= γ̄ψ(t) + t−1ψ(t) − ᾱeγ̄t
∞∑

k=0

ak(r)tk+(r+1)/2Kk+(r−3)/2(tᾱ).

That we may interchange differentiation and summation above is an immediate conse-
quence of Lemma 9 and Weierstraß’s theorem for sequences of holomorphic functions
(see e.g. Freitag and Busam (2000, p. 100)). Hence, we get from (11)

φ′(t) =
etψ′(et)
ψ(et)

= 1 + γ̄et − ᾱet

∞∑
k=0

ak(r)et(k+(r+1)/2)Kk+(r−3)/2(etᾱ)

∞∑
k=0

ak(r)et(k+(r+1)/2)Kk+(r−1)/2(etᾱ)
. �

Now we can formulate our main result on the scaling behaviour of NIG-Lévy-
Processes.

Theorem 11 Let Z(t), t ∈ R>0, be a NIG(α, β, μ, δ) Lévy process, then

d lnE(|Z(t) − μt|r)
d ln t

= 1 + γ̄t− ᾱt

∑∞
k=0 ak(r)tkKk+(r−3)/2(ᾱt)∑∞
k=0 ak(r)tkKk+(r−1)/2(ᾱt)

for every r > 0.

11



Proof: The result follows by combining Lemma 10 and (14). �
When comparing the above results with Barndorff-Nielsen and Prause (2001) note

that they looked at the derivatives with respect to ln(ᾱt), whereas we look at the
derivative with respect to ln t. The difference is related to the fact that Barndorff-
Nielsen and Prause (2001) only consider the case β = 0. In the general case the
parameters ᾱ and β̄ of the marginals at time t are both scaled with t when the
process evolves over time and hence it is most natural and convenient to consider the
change of the log moments versus the change of log time directly.

The expression for the local scaling behaviour derived in Theorem 11 is in general
not constant in time, hence the absolute μ-centered moments of a NIG Lévy process
do not obey a strict scaling law. Later we shall see from numerical examples that
apparent scaling is common. If we look at the symmetric NIG Lévy process, i.e.
β = 0, the above formula becomes

d lnE(|Z(t) − μt|r)
d ln t

= 1 + ᾱt− ᾱt
K(r−3)/2(ᾱt)
K(r−1)/2(ᾱt)

. (16)

From this one deducts using Kν = K−ν that the second μ-centered moment obeys a
scaling law with slope one, which is the same as for Brownian motion. Yet, also in
the symmetric case the μ-centered absolute moments show no scaling behaviour in
general.

The aggregational Gaussianity of NIG Lévy processes (cf. e.g. Barndorff-Nielsen
and Shephard (2001)) becomes visible in the asymptotic scaling of the symmetric
case for large times. For r = 1 it was already noted in Barndorff-Nielsen and Prause
(2001) that the local scaling approaches 1/2 for t → ∞ and hence for large t the
first absolute μ-centered moment of the process seems to scale like Brownian motion.
Using formula (ii) in Corollary 8, which for β = 0 becomes

E(|Z(t) − μt|r) =
2

r+1
2 δr

πᾱ
r−1
2

exp (tᾱ) Γ
(
r + 1

2

)
t(r+1)/2K r−1

2
(tᾱ), (17)

and Kν(x) ∼
√
π/2x−1/2e−x for x → ∞ (cf. Jørgensen (1982, p. 171) or Bronstein

et al. (2000)) we get that lnE(|Z(t) − μt|r) tends to r
2 ln t + c for t → ∞, where

c ∈ R is a constant. Hence, E(|Z(t) − μt|r) obeys a scaling law with slope r/2 for
t→ ∞, i.e. the symmetric NIG Lévy process approaches the exact scaling behaviour
of Brownian motion. This result can also be easily deduced from (16) using an
asymptotic expansion of K(r−3)/2(z)

K(r−1)/2(z) for z → +∞ (see e.g. Jørgensen (1982, p. 173)).
Studying the limiting behaviour of the absolute μ-centered moments analytically

for β �= 0 seems hardly possible. Yet, numerical studies indicate that a skewed
NIG Lévy process does not scale like Brownian motion for large times in general.
For example when computing d ln E((Z(t))2)

d ln t of the NIG(100, 30, 0, 0.001) Lévy process
for times from 1/2 to 1024 the values increase monotonically from 1.004 to 6.268.
Note, however, that the numerical data presented in section 7 seems to indicate that
for small values of |β| (relative to α) the value of d ln E(|Z(t)−μt|r)

d ln t may converge to
something at least very close to r/2, i.e. the moments scale very much like the ones
of Brownian motion for large times.
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To see from (17) what happens in the symmetric case for t ↘ 0 we employ the
fact that

Kν(x) ∼
{

Γ(ν)2ν−1x−ν for ν > 0, x↘ 0
− lnx for ν = 0, x↘ 0

(18)

(see e.g. Jørgensen (1982, p. 171)). For r = 1 and t↘ 0 we obtain that lnE(|Z(t)−
μt|) becomes ln t+ ᾱeln t +ln(− ln(tᾱ))+c with c ∈ R being a constant. From this we
conclude that for small values of t the first absolute μ-centered moment approximately
scales with slope one, as already noted in Barndorff-Nielsen and Prause (2001). The
same asymptotic scaling slope of one holds for r > 1, since lnE(|Z(t) − μt|r) ∼
ln t+ ᾱeln t + c(r) for t↘ 0. Yet, a different result is obtained for 0 < r < 1. In this
case lnE(|Z(t) − μt|r) ∼ r ln t+ ᾱeln t + c(r) and so there is asymptotic scaling with
slope r.

6 Notes on the numerical implementation

We will now briefly discuss some issues related to the implementation of formula (ii)
in Corollary 8 and Theorem 11 on a computer. Similar results hold for formula (i)
of Corollary 8. First note that (ii) in Corollary 8 can be reexpressed using (9) as:

E(|Z(t) − μt|r) =
(

2δ2t
ᾱ

)r/2 √
2tᾱ
π

exp (tγ̄)
∞∑

k=0

ak(r)tkKk+ r−1
2

(tᾱ). (19)

The value of the infinite series can only be approximated. Yet, note that the ana-
lytic convergence discussion of the series in section 3, especially formula (6), implies
asymptotically geometric convergence, which is the faster, the smaller |β| is relatively
to α. We suggest to compute the individual summands recursively as discussed below,
add them up and stop, when summands become negligible compared to the current
value of the approximation. To calculate the individual summands recursively note
that

ak(r)tk =
2β̄2(k + (r − 1)/2)
ᾱ(2k − 1)(2k)

t · ak−1(r)tk−1 (20)

using the functional equation Γ(z + 1) = zΓ(z) of the Gamma function,

a0(r) = Γ
(
r + 1

2

)
(21)

and

Kk+ r−1
2

(tᾱ) = 2 ·
(
k − 1 +

r − 1
2

)
(tᾱ)−1Kk−1+ r−1

2
(tᾱ) +Kk−2+ r−1

2
(tᾱ), (22)

see e.g. Jørgensen (1982, p. 170) or Bronstein et al. (2000, p. 528). The latter
formula implies that we can calculate the values of the Bessel functions needed from
a two term recursion, for which we only need to calculate K−1+ r−1

2
(tᾱ) and K r−1

2
(tᾱ)

as starting values. Hence, the calculation of the value of the series involves, apart
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from basic manipulations, only one evaluation of the Gamma function and two of
Bessel functions.

The series in the denominator in Theorem 11 is the series just discussed above and
the numerator is of the same type, only the index of the Bessel functions is changed,
and can hence be calculated analogously. Actually, both series can be calculated
simultaneously using only the recursion for ak(r)tk and the two term recursion for
the Bessel functions described above.

There is, however, one possible problem when using the two term recursion. If the
starting values are zeros up to numerical precision, then only zeros will be calculated
as summands. For example when using Matlab and the built in function for Kν

one gets K0(z) = 0 for z > 697. Hence, one needs to take care of this possible
case. Provided the recursion works, the numerical results obtained are usually almost
identical to the numerical results one gets when using a built in Bessel function
routine of e.g. Matlab for each summand, but the recursion saves computing power.
Furthermore, it should now be obvious, how numerical evaluations of the formulae
for μ-centered (absolute) moments of GH laws given in Theorem 5 can be organized
efficiently.

The Matlab code we used to produce the numerical results in this paper is avail-
able from www.ma.tum.de/stat/software. It is based upon the above considerations
and can be used to compute μ-centered moments of the NIG distribution/Lévy pro-
cess and the derivatives of the log moments with respect to log time.

7 Apparent scaling behaviour of NIG Lévy pro-

cesses

To exemplify the apparent scaling of general absolute μ-centered moments of NIG
Lévy processes, as in Barndorff-Nielsen and Prause (2001), we use the USD/DEM
exchange rate returns from the whole of 1996, contained in the HFDF96 data set from
Olsen & Associates, and consider the NIG Lévy process Z(t) ∼ NIG(α, β, tμ, tδ),
t ∈ R>0, such that Z(1) ∼ NIG(α, β, μ, δ), where the parameters are obtained by
maximum likelihood estimation based on the three hour log returns. The estimates
obtained are α = 415.9049, β = 1.512, δ = 0.0011 and μ = 0.000026. Note especially
that, as typical for returns of exchange rate series, μ is very close to zero and therefore
there is practically no difference between moments and μ–centered moments. Figure 1
(left), which depicts the logarithm of the first absolute μ–centered moment versus the
logarithm of time in seconds, is therefore optically indistinguishable from the figure
in Barndorff-Nielsen and Prause (2001) showing the first absolute moment calculated
via numerical integration. The estimated regression line of the log moments against
log time, fitted by least squares, has slope 0.5863, which is slightly higher than the
slope reported in Barndorff-Nielsen and Prause (2001), and d ln E(|Z(t)−μt|)

d ln t decreases
from 0.7853 to 0.5011 over the time interval depicted, which is 55

8 minutes to 32 days.
The regression line slope of 0.5863 fits in well with the empirical results of Müller
et al. (1990) and Guillaume et al. (1997), who report a scaling law with coefficient
0.58 to be typical for foreign exchange returns. This is significantly different from
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Figure 1: Approximate scaling power law for the first (left) and 0.9th µ-centered absolute
moment of the NIG Lévy process fitted to the USD/DEM exchange rate:
theoretical moments (•) and regression line log moments against log time

the Brownian motion case, where it is exactly 1/2 (cf. above). The behaviour of
d lnE(|Z(t)−μt|)

d ln t over the time interval considered indicates that for t → ∞ the slope
asymptotically becomes about 1/2, the exact Gaussian scaling coefficient. This is
related to the fact that |β| is relatively small, as already pointed out earlier in the
discussion of the scaling asymptotics.

With our results obtained above it is possible to study the behaviour of moments
other than the first. Figures 1 (right), 2 (left), 2 (right) and 3 (left) show the time
behaviour of the 0.9th, 1.1th, 0.5th and 1.5th μ–centered absolute moments over
the same time horizon. All figures exhibit apparent scaling, which improves with
the order of the moment. The fitted regression lines have slope 0.53535, 0.63536,
0.31322 and 0.81327 respectively, which are all higher than the corresponding values
for Brownian motion 0.45, 0.55, 0.25 and 0.75. The values of d lnE(|Z(t)−μt|r)

d ln t decrease
from 0.7316 to 0.4509, 0.8316 to 0.5512, 0.4499 to 0.2503 and 0.9499 to 0.7515 respec-
tively. So again they seem to converge to some value around the Brownian motion
scaling slope.

Figure 3 (right) shows that the second μ–centered moment seems to exhibit per-
fect linear scaling. Yet, there is in fact no strict scaling law holding. The values
of the regression coefficient 1.0001 and d lnE(|Z(t)−μt|2)

d ln t are very close to one with
d lnE(|Z(t)−μt|2)

d ln t increasing very slowly from 1 to 1.0015. Such a result is to be ex-
pected, since |β| is small (compared to α) and for β = 0 we have that the variance,
which is in this case identical to the second μ-centered moment, obeys a strict scaling
law with slope one as for Brownian motion.

The third μ–centered absolute moment, see Figure 4 (left), still exhibits apparent
scaling behaviour with a regression slope of 1.2966, but the values of d lnE(|Z(t)−μt|3)

d ln t
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Figure 2: Approximate scaling power law for the 1.1th (left) and 0.5th µ-centered absolute
moment: theoretical moments (•) and regression line log moments against log time
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Figure 3: Approximate scaling power law for the 1.5th (left) and second µ-centered absolute
moment: theoretical moments (•) and regression line log moments against log time
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Figure 4: Approximate scaling power law for the third (left) and 10th µ-centered absolute
moment: theoretical moments (•) and regression line log moments against log time

are now increasing from 1.0134 to 1.5007 rather than decreasing and the slope is
lower than the scaling coefficient 1.5 for Brownian motion. However, d lnE(|Z(t)−μt|3)

d ln t
still seems to converge to some value close to 3/2 at large times. It generally seems to
be the case that d lnE(|Z(t)−μt|r)

d ln t increases with time for r > 2, whereas it decreases for
r < 2. Actually further calculations indicate that this change takes place marginally
below 2 at about 1.9995. Some more numerical calculations hint that in the symmet-
ric case lnE(|Z(t) − μt|r) is concave as a function of ln t for 0 < r ≤ 2 and convex
for r ≥ 2.

For very high values of r no apparent linear scaling is observed over the time
horizon considered, see Figure 4 (right) for r = 10 as an example.

Looking at the slopes of the apparent scaling of the μ-centered absolute moments
of orders 0.2 to 4 as plotted in Figure 5, the relationship between scaling coefficient
and order is apparently not simply a linear one as, for example, in the case of an
α-stable Lévy process (see Samorodnitsky and Taqqu (1994, chapter 7) and Sato
(1999, chapter 3)).

Our results obtained above, show that NIG Lévy processes are able to explain
the stylized feature of scaling laws encountered in foreign exchange returns. Com-
pared to Brownian motion the NIG Lévy process does in general not exhibit exact
linear scaling, but apparent scaling over time horizons relevant in financial markets
is common. The symmetric NIG Lévy process has the same exact scaling rule for the
second μ–centered moment, that is the variance, as Brownian motion.
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Figure 5: Order of the µ-centered absolute moment of the NIG Lévy process against
apparent scaling coefficient and log-log plot
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School of Business, which is funded by the Danish Social Science Foundation.

This paper was written while the second author was visiting the Department
of Mathematical Sciences at the University of Århus under the European Union’s
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A Moments of GIG and normal laws

For completeness we provide below the well-known formulae for the moments of the
GIG and normal laws.

18



For the GIG law the following result is given in Jørgensen (1982, p. 13), who uses
a slightly different parametrization.

Lemma 12 Let X ∼ GIG(ν, δ, γ) with δ, γ > 0. Then

E(Xr) =
(
δ

γ

)r Kν+r(γ̄)
Kν(γ̄)

for every r > 0.

Proof:

E(Xr) =
∫ ∞

0

γ̄ν

2Kν(γ̄)
δ−2νxν+r−1 exp

(
−1

2
γ̄
(
(γ̄δ−2x)−1 + γ̄δ−2x

))
dx

y:=γ̄δ−2x
=

=
γ̄−rδ2r

Kν(γ̄)
1
2

∫ ∞

0
yν+r−1 exp

(
−1

2
γ̄(y−1 + y)

)
dy=

(
δ

γ

)r Kν+r(γ̄)
Kν(γ̄)

,

where in the last step we employed the integral representation of Kν+r stated earlier
when introducing the modified Bessel function of the third kind (equation (2)). �

The absolute moments of the normal distribution N(0, 1) are well known and
given in many standard texts on probability theory, viz.:

Lemma 13 Let X ∼ N(0, 1) and r > 0 then

E(|X|r) =
2r/2Γ

(
r+1
2

)
√
π

.

Proof:

E(|X|r) = (2π)−1/2

∫
R

|x|re−x2

2 dx =
(

2
π

)1/2 ∫ ∞

0
xre−

x2

2 dx
t:= x2

2=

=
2r/2

√
π

∫ ∞

0
t

r+1
2

−1e−tdt =
2r/2

√
π

Γ
(
r + 1

2

)
�
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Emmer, S. and Klüppelberg, C.: 2004, Optimal portfolios when stock prices follow
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