59 research outputs found

    THE EFFECT OF SOURCE TREATMENT ON POLLUTANT DISPERSION IN AN IDEALISED URBAN ROUGHNESS IN NUMERICAL SIMULATIONS USING THE STANDARD k-ε TURBULENCE CLOSURE MODEL

    Get PDF
    The need for accurate model predictions in urban air quality assessment studies during the past decade has led to the ever increasing use of Computational Fluid Dynamics (CFD) models in order to resolve the various local scale inhomogeneities which dominate flow and dispersion and are usually encountered in urban areas. Towards the aim of improving model predicted dispersion via the use of CFD models, a numerical study was undertaken in order to investigate the effect of different techniques applied for treating the sources of emissions on the near source behaviour of the models, as well as on the actual predicted concentrations at locations away from the vicinity of the sources under consideration. A series of 3D numerical simulations were performed for the wind tunnel model geometry of the Mock Urban Setting Test (MUST) field experiment of the University of Hamburg, Meteorological Institute, Division of Technical Meteorology, which was made available within the frame of COST Action 732. Overall in conclusion, results show that depending on the type of source, the intensity of the vertical component of the emissions exit velocity at the source and the mesh refinement close to source boundaries predicted concentrations can deviate significantly from the wind tunnel measurements. However, it is possible to partially improve the performance of a CFD model in urban dispersion problems, mainly via the application of the proper combination of these parameters

    A METAMODELLING IMPLEMENTATION OF A TWO-WAY COUPLED MESOSCALE-MICROSCALE FLOW MODEL FOR URBAN AREA SIMULATIONS

    Get PDF
    Systems of coupled prognostic mesoscale and microscale models have been used as a tool to accurately simulate flows around artificial structures and over densely-built urban areas. Typical implementations of such systems are based on a one-way coupling scheme, where the mesoscale model provides initial and boundary conditions for each off-line application of the microscale model. While very successful in predicting steady-state flows within specific local-scale areas, such schemes fail to account for feedbacks on the mesoscale flow induced by the presence of structures in smaller scales. Unfortunately, the large gap of spatial and temporal scales practically prohibits parallel on-line execution of the mesoscale and microscale models for any significant time interval. It is therefore necessary that a simplifying approach is adopted, where the microscale feedback is spatially and temporally upscaled to interact with parts of the mesoscale domain covering the urban area. In the present work a two-way coupled model system is developed, consisting of the prognostic mesoscale model MEMO and the microscale model MIMO. The microscale feedback on the mesoscale domain is simulated using a metamodelling approach, where the effect of local flows on the vertical profiles is estimated for representative urban areas of sizes up to a few hundred meters and used as calibration input for a set of interpolating metamodels. The feedback from the microscale metamodels is then introduced back in the mesoscale grid by means of Newtonian relaxation. As an illustrative application, simulations for the city of Athens, Greece during a multi-day period are presented. Effects of the microscale feedback on the mesoscale flow become evident both as a reduction of lower-level wind speeds in urban cells as well as an overall increase in turbulent kinetic energy production over densely-built areas

    Multiscale Modelling Tools for Flow and Dispersion Calculations in Urban Areas

    Get PDF

    Improving Resilience of Transport Instrastructure to Climate Change and other natural and Manmande events based on the combined use of Terrestrial and Airbone Sensors and Advanced Modelling Tools

    Get PDF
    The project PANOPTIS, funded by the European Commission under the H2020 Programme, aims at increasing the resilience of the transport infrastructures (focusing on roads) and ensuring reliable network availability under unfavourable conditions, such as extreme weather, landslides, and earthquakes. The main target is to combine downscaled climate change scenarios (applied to road infrastructures) with structural and geotechnical simulation tools and with actual data from a multi-sensor network (terrestrial and airborne-based), so as to provide the operators with an integrated tool able to support more effective management of their infrastructures at planning, maintenance and operation level. During the first stage of the project, the consortium will develop advanced technologies to monitor and control transport infrastructures, such as a Geotechnical and Structural Simulation Tool (SGSA) to predict structural and geotechnical risks in road infrastructures; drone-technologies applied to road upkeep and incident management; improved computer vision and machine learning techniques for damage diagnosis of infrastructure, and early warning systems to help operators identify and communicate emerging systemic risks. At the same time, experts in climate modelling, will analyse the possible short and long term effects of climate change on transport infrastructure (e.g. flooding, heavier snows). All the information from the different sensors, models and applications will be integrated and processed through a unique Resilience Assessment Platform that will support operators in the introduction of adaptation and mitigation strategies based on multi-risk scenarios. During the second stage of the project, ACCIONA Engineering will implement the developed technologies and methodologies in a section of the Spanish A-2 motorway, in the province of Guadalajara. PANOPTIS integrated Platform will help optimize the management and maintenance of the Ministry of Public Works' concession for a 77.5-km section, all in collaboration with ACCIONA Infrastructure Maintenance (AMISA) and ACCIONA Concessions. In parallel, PANOPTIS platform will also be implemented in a section of 62 Km of a Greek motorway, renowned for its seismic activity. The trials in Greece hosted by the operator Egnatia Odos will integrate the motorway that serves the Airport of Thessaloniki. So the scenario will integrate a modal transfer segment.Le projet PANOPTIS, financé par la Commission européenne dans le cadre du programme H2020, vise à accroître la résilience de l'infrastructure de transport et à permettre une disponibilité fiable du réseau dans des conditions défavorables, telles que les conditions météorologiques extrêmes, les glissements de terrain et les tremblements de terre. L'objectif principal doit être associé à un réseau multi-capteurs (terrestre et aéroporté) pour permettre une gestion plus efficace de leurs infrastructures au niveau de la planification, de la maintenance et de l'exploitation. Au cours de la première phase du projet, le consortium développera des technologies avancées pour surveiller et contrôler les infrastructures de transport, telles que l'outil de simulation géotechnique et structurelle (SGSA) permettant de prévoir les risques structurels et géotechniques dans les infrastructures routières; technologies de drones appliquées à l'entretien des routes et à la gestion des incidents; la vision par ordinateur et les techniques d'apprentissage automatique pour le diagnostic des infrastructures et les systèmes d'alerte précoce. Dans le même temps, des experts en modélisation du climat analyseront le potentiel du changement climatique sur les infrastructures de transport (par exemple, les inondations, les neiges plus lourdes). Toutes les informations provenant des différents capteurs, modèles et applications seront intégrées dans un scénario unique comportant plusieurs risques. Au cours de la deuxième phase du projet, ACCIONA Engineering mettra en oeuvre les technologies et les méthodologies dans une section de l'autoroute espagnole A-2, dans la province de Guadalajara. La plate-forme intégrée PANOPTIS contribuera à optimiser la gestion et la maintenance de la concession du ministère des Travaux publics pour une section de 77,5 km, le tout en collaboration avec ACCIONA Infrastructure Maintenance (AMISA) et ACCIONA Concessions. Parallèlement, la plate-forme PANOPTIS sera également mise en oeuvre dans une section de 62 Km d'une autoroute grecque réputée pour son activité sismique. Les essais en Grèce organisés par l'opérateur Egnatia Odos vont rejoindre l'aéroport de Thessalonique. Le scénario intégrera donc un segment de transfert modal

    A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0

    Get PDF
    Large-eddy simulation (LES) provides a physically sound approach to study complex turbulent processes within the atmospheric boundary layer including urban boundary layer flows. However, such flow problems often involve a large separation of turbulent scales, requiring a large computational domain and very high grid resolution near the surface features, leading to prohibitive computational costs. To overcome this problem, an online LES-LES nesting scheme is implemented into the PALM model system 6.0. The hereby documented and evaluated nesting method is capable of supporting multiple child domains, which can be nested within their parent domain either in a parallel or recursively cascading configuration. The nesting system is evaluated by first simulating a purely convective boundary layer flow system and then three different neutrally stratified flow scenarios with increasing order of topographic complexity. The results of the nested runs are compared with corresponding non-nested high-and low-resolution results. The results reveal that the solution accuracy within the high-resolution nest domain is clearly improved as the solutions approach the non-nested high-resolution reference results. In obstacle-resolving LES, the two-way coupling becomes problematic as anterpolation introduces a regional discrepancy within the obstacle canopy of the parent domain. This is remedied by introducing canopy-restricted anterpolation where the operation is only performed above the obstacle canopy. The test simulations make evident that this approach is the most suitable coupling strategy for obstacle-resolving LES. The performed simulations testify that nesting can reduce the CPU time up to 80 % compared to the fine-resolution reference runs, while the computational overhead from the nesting operations remained below 16 % for the two-way coupling approach and significantly less for the one-way alternative. © 2021 Antti Hellsten et al

    A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0

    Get PDF
    Large-eddy simulation (LES) provides a physically sound approach to study complex turbulent processes within the atmospheric boundary layer including urban boundary layer flows. However, such flow problems often involve a large separation of turbulent scales, requiring a large computational domain and very high grid resolution near the surface features, leading to prohibitive computational costs. To overcome this problem, an online LES–LES nesting scheme is implemented into the PALM model system 6.0. The hereby documented and evaluated nesting method is capable of supporting multiple child domains, which can be nested within their parent domain either in a parallel or recursively cascading configuration. The nesting system is evaluated by first simulating a purely convective boundary layer flow system and then three different neutrally stratified flow scenarios with increasing order of topographic complexity. The results of the nested runs are compared with corresponding non-nested high- and low-resolution results. The results reveal that the solution accuracy within the high-resolution nest domain is clearly improved as the solutions approach the non-nested high-resolution reference results. In obstacle-resolving LES, the two-way coupling becomes problematic as anterpolation introduces a regional discrepancy within the obstacle canopy of the parent domain. This is remedied by introducing canopy-restricted anterpolation where the operation is only performed above the obstacle canopy. The test simulations make evident that this approach is the most suitable coupling strategy for obstacle-resolving LES. The performed simulations testify that nesting can reduce the CPU time up to 80 % compared to the fine-resolution reference runs, while the computational overhead from the nesting operations remained below 16 % for the two-way coupling approach and significantly less for the one-way alternative.publishedVersio
    • …
    corecore