16 research outputs found

    Reference intervals for 24 laboratory parameters determined in 24-hour urine collections

    Get PDF
    Background: Reference intervals for many laboratory parameters determined in 24-h urine collections are either not publicly available or based on small numbers, not sex specific or not from a representative sample. Methods: Osmolality and concentrations or enzymatic activities of sodium, potassium, chloride, glucose, creatinine, citrate, cortisol, pancreatic α-amylase, total protein, albumin, transferrin, immunoglobulin G, α1-microglobulin, α2-macroglobulin, as well as porphyrins and their precursors (δ-aminolevulinic acid and porphobilinogen) were determined in 241 24-h urine samples of a population-based cohort of asymptomatic adults (121 men and 120 women). For 16 of these 24 parameters creatinine-normalized ratios were calculated based on 24-h urine creatinine. The reference intervals for these parameters were calculated according to the CLSI C28-A3 statistical guidelines. Results: By contrast to most published reference intervals, which do not stratify for sex, reference intervals of 12 of 24 laboratory parameters in 24-h urine collections and of eight of 16 parameters as creatinine-normalized ratios differed significantly between men and women. For six parameters calculated as 24-h urine excretion and four parameters calculated as creatinine-normalized ratios no reference intervals had been published before. For some parameters we found significant and relevant deviations from previously reported reference intervals, most notably for 24-h urine cortisol in women. Ten 24-h urine parameters showed weak or moderate sex-specific correlations with age. Conclusions: By applying up-to-date analytical methods and clinical chemistry analyzers to 24-h urine collections from a large population-based cohort we provide as yet the most comprehensive set of sex-specific reference intervals calculated according to CLSI guidelines for parameters determined in 24-h urine collections

    First Report of a Low-Frequency Mosaic Mutation in the Hydroxymethylbilane Synthase Gene Causing Acute Intermittent Porphyria

    Get PDF
    Acute porphyrias are a group of monogenetic inborn errors of heme biosynthesis, characterized by acute and potentially life-threatening neurovisceral attacks upon exposure to certain triggering factors. Biochemical analyses can determine the type of acute porphyria, and subsequent genetic analysis allows for the identification of pathogenic variants in the specific gene, which provides information for family counselling. In 2017, a male Swiss patient was diagnosed with an acute porphyria while suffering from an acute attack. The pattern of porphyrin metabolite excretion in urine, faeces, and plasma was typical for an acute intermittent porphyria (AIP), which is caused by inherited autosomal dominant mutations in the gene for hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthetic pathway. However, the measurement of HMBS enzymatic activity in the erythrocytes was within the normal range and Sanger sequencing of the HMBS gene failed to detect any pathogenic variants. To explore the molecular basis of the apparent AIP in this patient, we performed third-generation long-read single-molecule sequencing (nanopore sequencing) on a PCR product spanning the entire HMBS gene, including the intronic sequences. We identified a known pathogenic variant, c.77G>A, p.(Arg26His), in exon 3 at an allelic frequency of ~22% in the patient’s blood. The absence of the pathogenic variant in the DNA of the parents and the results of additional confirmatory studies supported the presence of a de novo mosaic mutation. To our knowledge, such a mutation has not been previously described in any acute porphyria. Therefore, de novo mosaic mutations should be considered as potential causes of acute porphyrias when no pathogenic genetic variant can be identified through routine molecular diagnostics

    Heme Biosynthetic Gene Expression Analysis With dPCR in Erythropoietic Protoporphyria Patients

    Get PDF
    Background: The heme biosynthesis (HB) involves eight subsequent enzymatic steps. Erythropoietic protoporphyria (EPP) is caused by loss-of-function mutations in the ferrochelatase (FECH) gene, which in the last HB step inserts ferrous iron into protoporphyrin IX (PPIX) to form heme.Aim and method: The aim of this work was to for the first time analyze the mRNA expression of all HB genes in peripheral blood samples of patients with EPP having the same genotype FECH c.[215dupT]; [315-48T > C] as compared to healthy controls by highly sensitive and specific digital PCR assays (dPCR).Results: We confirmed a decreased FECH mRNA expression in patients with EPP. Further, we found increased ALAS2 and decreased ALAS1, CPOX, PPOX and HMBS mRNA expression in patients with EPP compared to healthy controls. ALAS2 correlated with FECH mRNA expression (EPP: r = 0.63, p = 0.03 and controls: r = 0.68, p = 0.02) and blood parameters like PPIX (EPP: r = 0.58 p = 0.06).Conclusion: Our method is the first that accurately quantifies HB mRNA from blood samples with potential applications in the monitoring of treatment effects of mRNA modifying therapies in vivo, or investigation of the HB pathway and its regulation. However, our findings should be studied in separated blood cell fractions and on the enzymatic level

    Influence of iron metabolism on gene expression in erythropoietic protoporphyria

    Full text link
    Erythropoietic protoporphyria (EPP, OMIM 177000) is a hereditary disease characterized by extremely painful photosensitivity. The underlying defect is a partial deficiency of the enzyme ferrochelatase (FECH) which catalyzes the last step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX (PPIX). As a result of the enzyme deficiency, a large amount of the phototoxic substance PPIX accumulates in precursors of erythrocytes. In addition, up to 60% of EPP patients show disturbances of iron metabolism, e.g. microcytic, hypochromic anemia, low transferrin saturation and low ferritin. However, administration of iron is observed to worsen the photosensitivity. Genetically, over 97% of EPP patients carry, in addition to a loss of function mutation in trans, the identical SNP FECH IVS3-48C which enhances aberrant splicing. Since iron and heme metabolism as well as splicing are highly regulated we hypothesized that a mechanism exists interconnecting the three processes. An indepth characterization of FECH intron 3 was performed to identify possible sequence features that may be related to the disease causing splice defect or respond directly or indirectly to iron, heme or other products and substrates of heme metabolism. We could show that two homopolymeric tracts in FECH intron 3 differ in length between individuals, and that the low expression allele IVS3-48C is associated with longer poly-C tracts. Although homopolymeric tracts are conserved and significantly over-represented in the genome than simply by chance, we could not find a correlation between disease features and the length of these sequences yet. However, we could demonstrate that cultured cells derived from patients and healthy controls show enhanced aberrant splicing of FECH intron 3 and a subsequent decrease of the amount of FECH protein under iron depletion. The effect is more pronounced in the more frequent SNP IVS3-48T. In the low expression allele (IVS3-48C), a higher baseline level of aberrant splicing is seen under iron saturated condition, which is less enhanced by iron depletion. The consequence of an IVS3-48C genotype is therefore equivalent to the effect iron depletion exerts on cells from individuals with the more common genotype. The observed effect is mediated by the iron and 2-oxoglutarate-dependent dioxygenase Jmjd6, acting as a link between iron availability and splice regulation. To elucidate systemic aspects of iron metabolism in EPP, we further tested our hypothesis that the rate limiting enzyme of erythroid heme biosynthesis, 5-aminolevulinic acid synthase 2 (ALAS2), is involved in the adverse reaction on iron supplementation observed in patients. ALAS2 mRNA harbors an iron-responsive element (IRE) which prevents translation of the enzyme in case iron is scarce. Since iron is deficient in most EPP patients, the translation of ALAS2 mRNA might be partly repressed. Consequently, administration of iron could lead to an increase in ALAS2 protein due to a de-repression of the translation block and subsequently stimulate synthesis of PPIX, worsening the photosensitivity. In a longitudinal study, a positive correlation between hemoglobin levels and PPIX was seen in the three patients investigated – demonstrating the dependence of both PPIX and heme synthesis on iron availability in EPP

    Current trials in erythropoietic protoporphyria: are placebo controls ethical?

    No full text
    A new active substance called “dersimelagon” (MT-7117) is being tested as an alternative treatment option for Erythropoietic protoporphyria (EPP). At the moment, dersimelagon is being tested both in the US and in Europe in a phase III placebo-controlled RCT. However, given the availability of an already approved treatment option for EPP the use of a placebo arm is questionable from an ethics point of view. We analyze the issue and suggest that a noninferiority active-control trial without placebo is an ethically and scientifically more valid design to test the efficacy of dersimelagon as well as other EPP treatments.ISSN:1750-117

    Modeling the ferrochelatase c.315-48C modifier mutation for erythropoietic protoporphyria (EPP) in mice

    Full text link
    Erythropoietic protoporphyria (EPP) is caused by deficiency of ferrochelatase (FECH), which incorporates iron into protoporphyrin IX (PPIX) to form heme. Excitation of accumulated PPIX by light generates oxygen radicals that evoke excessive pain and, after longer light exposure, cause ulcerations in exposed skin areas of individuals with EPP. Moreover, ∼5% of the patients develop a liver dysfunction as a result of PPIX accumulation. Most patients (∼97%) have a severe FECH mutation (Mut) in trans to an intronic polymorphism (c.315-48C), which reduces ferrochelatase synthesis by stimulating the use of an aberrant 3' splice site 63 nt upstream of the normal site for exon 4. In contrast, with the predominant c.315-48T allele, the correct splice site is mostly used, and individuals with a T/Mut genotype do not develop EPP symptoms. Thus, the C allele is a potential target for therapeutic approaches that modify this splicing decision. To provide a model for pre-clinical studies of such approaches, we engineered a mouse containing a partly humanized Fech gene with the c.315-48C polymorphism. F1 hybrids obtained by crossing these mice with another inbred line carrying a severe Fech mutation (named m1Pas) show a very strong EPP phenotype that includes elevated PPIX in the blood, enlargement of liver and spleen, anemia, as well as strong pain reactions and skin lesions after a short period of light exposure. In addition to the expected use of the aberrant splice site, the mice also show a strong skipping of the partly humanized exon 3. This will limit the use of this model for certain applications and illustrates that engineering of a hybrid gene may have unforeseeable consequences on its splicing

    Delta-aminolevulinic acid synthase 2 expression in combination with iron as modifiers of disease severity in erythropoietic protoporphyria

    No full text
    Deficiency in ferrochelatase (FECH), the last enzyme in the heme biosynthetic pathway, leads to an accumulation of protoporphyrin IX (PPIX) that causes a severely painful phototoxic reaction of the skin in patients with erythropoietic protoporphyria (EPP). Besides phototoxicity of the skin, EPP patients often present with symptoms of iron deficiency in form of a microcytic and hypochromic anemia with low serum iron and ferritin. In addition, elevated aminolevulinic acid synthase 2 (ALAS2) both at the mRNA and protein levels have been observed among EPP patients. ALAS is the first enzyme in the pathway and exists in two isoforms, whereby the isoform 2 (ALAS2) is expressed exclusively in erythropoiesis. The mRNA of ALAS2 contains an iron response element (IRE) at its 5′UTR. When iron is limited, iron response element binding protein 2 (IRP2) binds to the IRE of ALAS2 mRNA and suppresses its translation. In this study, we demonstrated that iron deprivation increased the amount of ALAS2 mRNA as well as the ratio of ALAS2 to FECH mRNAs in cultured erythroleukemic K562 cells. At the protein level, however, iron deprivation in the cell line caused reductions in both enzymes as shown by the Western blot analysis. A comparable increase in the ratio of ALAS2 to FECH mRNAs was also found in EPP patients indicating an imbalance in heme biosynthesis. As iron cannot be completely missing from an organism, we assume that in EPP patients, a certain amount of ALAS2 mRNA is translated despite a partial deficiency of FECH. The increase in ALAS2 enzyme contributes to the accumulation in PPIX in the patients. Targeted inhibition of ALAS2 could therefore be a treatment option for EPP.ISSN:1096-7192ISSN:1096-720

    Modeling the ferrochelatase c.315-48C modifier mutation for erythropoietic protoporphyria (EPP) in mice

    Get PDF
    Erythropoietic protoporphyria (EPP) is caused by deficiency of ferrochelatase (FECH), which incorporates iron into protoporphyrin IX (PPIX) to form heme. Excitation of accumulated PPIX by light generates oxygen radicals that evoke excessive pain and, after longer light exposure, cause ulcerations in exposed skin areas of individuals with EPP. Moreover, ∼5% of the patients develop a liver dysfunction as a result of PPIX accumulation. Most patients (∼97%) have a severe FECH mutation (Mut) in trans to an intronic polymorphism (c.315-48C), which reduces ferrochelatase synthesis by stimulating the use of an aberrant 3′ splice site 63 nt upstream of the normal site for exon 4. In contrast, with the predominant c.315-48T allele, the correct splice site is mostly used, and individuals with a T/Mut genotype do not develop EPP symptoms. Thus, the C allele is a potential target for therapeutic approaches that modify this splicing decision. To provide a model for pre-clinical studies of such approaches, we engineered a mouse containing a partly humanized Fech gene with the c.315-48C polymorphism. F1 hybrids obtained by crossing these mice with another inbred line carrying a severe Fech mutation (named m1Pas) show a very strong EPP phenotype that includes elevated PPIX in the blood, enlargement of liver and spleen, anemia, as well as strong pain reactions and skin lesions after a short period of light exposure. In addition to the expected use of the aberrant splice site, the mice also show a strong skipping of the partly humanized exon 3. This will limit the use of this model for certain applications and illustrates that engineering of a hybrid gene may have unforeseeable consequences on its splicing
    corecore