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ABSTRACT
Erythropoietic protoporphyria (EPP) is caused by deficiency of
ferrochelatase (FECH), which incorporates iron into protoporphyrin IX
(PPIX) to formheme.Excitationof accumulatedPPIXby light generates
oxygen radicals that evoke excessive pain and, after longer light
exposure, cause ulcerations in exposed skin areas of individuals with
EPP. Moreover, ∼5% of the patients develop a liver dysfunction as a
result ofPPIXaccumulation.Most patients (∼97%)haveasevereFECH
mutation (Mut) in trans to an intronic polymorphism (c.315-48C), which
reduces ferrochelatase synthesis by stimulating the use of an aberrant
3′ splice site 63 nt upstream of the normal site for exon 4. In contrast,
with the predominant c.315-48T allele, the correct splice site is mostly
used, and individuals with a T/Mut genotype do not develop EPP
symptoms. Thus, the C allele is a potential target for therapeutic
approaches that modify this splicing decision. To provide a model for
pre-clinical studies of such approaches, we engineered a mouse
containing a partly humanized Fech gene with the c.315-48C
polymorphism. F1 hybrids obtained by crossing these mice with
another inbred line carrying a severe Fech mutation (named m1Pas)
show a very strong EPP phenotype that includes elevated PPIX in the
blood, enlargement of liver and spleen, anemia, as well as strong pain
reactions and skin lesions after a short period of light exposure. In
addition to the expected use of the aberrant splice site, the mice also
showa strong skippingof the partly humanized exon 3.Thiswill limit the
use of thismodel for certain applications and illustrates that engineering
of a hybridgenemayhaveunforeseeableconsequenceson its splicing.

KEY WORDS: Liver dysfunction, Mouse model, Photosensitivity,
Protoporphyrin IX (PPIX), Rare disease, Splicing defect

INTRODUCTION
Erythropoietic protoporphyria (EPP; MIM 177000) is a rare
hereditary disorder of heme biosynthesis. Its most frequent cause
is a partial deficiency in ferrochelatase (FECH; EC 4.99.1.1), the

last enzyme of the heme biosynthesis pathway. EPP can also be due
to an increase in δ-aminolevulinate synthase 2 (ALAS2; EC
2.3.1.37), the first and rate-limiting enzyme of the pathway. The
overall frequency of this latter change could be between 2 and 10%,
as some reports have indicated (Balwani et al., 2013; Whatley et al.,
2010). Both types of alteration lead to the excessive accumulation
of protoporphyrin IX (PPIX), a heme ring that has not yet been
complexed with iron (Anderson et al., 2001). Activation of PPIX by
light in the visiblewavelength range induces the formation of singlet
oxygen. If excessive amounts of PPIX accumulate in red blood cells
(RBCs) and plasma of skin micro-vessels, as is the case in EPP
patients, severe phototoxic skin reactions occur within a few
minutes of exposure to sunlight or intense artificial light. Depending
on the intensity of light irradiation and the individual level of PPIX
accumulation, excruciating and incapacitating pain results, lasting
up to 2 weeks. This may be accompanied by additional signs such as
edema, petechia, blisters and erosions. In severe cases, when the
PPIX concentrations reach a level above 30 µmol/l RBCs, the liver
can be affected by toxic effects of accumulated PPIX, which,
ultimately, can lead to liver failure.

To date, there is no effective treatment for EPP. Most of the tested
approaches aimed at preventing or reducing symptoms but had no or
very limited success (Minder et al., 2009). In particular, the strong
pain symptoms do not respond to any of the conventional analgesics
(Thunell et al., 2000), even though there is a recent indication that
antagonists of the TRPA1 and TRPV1 polymodal receptor channels
may work (Babes et al., 2016). Recently, the α-melanocyte-
stimulating hormone analog afamelanotide was shown to postpone
the occurrence and reduce the severity of EPP symptoms by
stimulating skin pigmentation (Biolcati et al., 2015; Harms et al.,
2009; Langendonk et al., 2015), but this still is a purely
symptomatic treatment. A treatment and eventually a cure for EPP
can be achieved by bone marrow transplantation. However, because
of the inherent severe immunological risks, experts recommend
this procedure only in cases of recurrent life-threatening liver
complications (Anstey and Hift, 2007; Minder et al., 2016; Wahlin
et al., 2007). Gene therapy using a FECH cDNA expression
construct has been proven to work experimentally in mice (Pawliuk
et al., 1999; Richard et al., 2001), but has not been advanced to the
clinical stage. Thus, there is a strong need for an efficient treatment
of the underlying causes of EPP.

EPP can be caused by three different genetic aberrations (Lecha
et al., 2009): (1) an activating mutation in ALAS2; (2) compound
heterozygous or homozygous FECH mutations resulting in a
recessive form; and (3) the combination of a strongly hypomorphic
or null mutation of one FECH allele in trans to a C-polymorphism
(instead of T) at position −48 with respect to the 3′ splice site of
exon 4 (c.315-48C). This single nucleotide exchange leads to a
lower expression of this allele by increasing the usage of an
alternative 3′ splice site (ss) positioned 63 nucleotides upstreamReceived 8 September 2016; Accepted 29 December 2016
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of the normal one (Gouya et al., 2006, 2002). The use of this
alternative ss inserts 63 additional nucleotides into the RNA
product. Two in-frame stop codons in this extra sequence prevent
the formation of functional ferrochelatase and target the transcript to
nonsense-mediated mRNA decay (NMD). This last type of genetic
disposition is by far the most abundant, amounting to ∼97% of all
FECH-related EPP cases.
Because of its high frequency among EPP patients, the aberrant

splicing caused by the c.315-48C polymorphism is an attractive
target for therapeutic interventions. Such a splicing modulation is
conceivable with antisense oligonucleotides, genes for antisense
RNAs introduced by gene therapy, or even small-molecule drugs
selected to modulate a specific ss with high specificity (Nlend
Nlend and Schümperli, 2012; Scotti and Swanson, 2016). In the
case of EPP, recent studies showed that certain antisense
oligonucleotides are able to shift the ss preference of FECH exon
4 from the alternative to the conventional ss, thereby enhancing the
production of functional FECH mRNA and protein (Li et al., 2017;
Oustric et al., 2014).
To develop such therapeutic approaches towards a clinical stage,

appropriate animal models are required. A first mouse EPP model
designated as m1Pas was described in 1991 (Boulechfar et al., 1993;
Tutois et al., 1991). In this model, an EMS-induced missense
mutation in Fech exon 3 produces a ferrochelatase enzyme with
∼6% residual activity. Another EPPmouse model based on deletion
of exon 10 was described by Magness and Brenner (1999) and
Magness et al. (2002) and was homozygously lethal. This exon 10
deletion was further investigated by Bloomer et al. (2008) in a high
and low Fech expression background. They demonstrated that the
expression level of the non-mutant allele determines the penetrance
of the mutation in the heterozygous state. However, despite the fact
that the PPIX level was increased in the low expression background,
it was still much lower than in human EPP.
Although these models have provided useful information on

genetic and pathophysiological aspects of EPP and can also be used
to explore certain types of therapies, it is important to note that none
of themmimics the human c.315-48C polymorphism that contributes
to EPP in the vast majority of human EPP patients. Thus, in order to
provide a model that can be used to develop and assess splicing
modulation therapies for EPP, we engineered mice with a partly
humanized Fech gene containing the c.315-48C polymorphism. By
crossing these mice with m1Pas mice, we are able to generate a
genotype closely reflecting human EPP. These compound
heterozygous mice show a very severe EPP phenotype that is
reflected by an elevated prenatal mortality rate and impaired growth,
as well as strong photosensitivity, anemia and liver symptoms.
However, this strong phenotype is not only due to the aberrant
splicing caused by c.315-48C, but also, to a large extent, to another
type of mis-splicing – the skipping of exon 3. The implications of this
finding for future uses of our model will be discussed.

RESULTS
Creation of a humanized c.315-48C Fech allele by
homologous integration
To generate a mouse model reproducing the enhanced aberrant
splicing caused by the human FECH c.315-48C polymorphism, we
amplified by PCR a suitable region of DNA from Epstein–Barr virus
(EBV)-transformed lymphoblasts of a non-porphyric human
homozygous for the c.315-48C allele (Barman-Aksözen et al.,
2013). The amplified 2.1 kb fragment starting in exon 3 and ending
in intron 4 (near the end of exon 4) was produced with forward and
reverse primers that introduced restriction sites for XbaI and SalI,

respectively. TheXbaI-SalI fragment was then cloned in pBluescript,
and several clones were verified by DNA sequencing. For further
work, we selected clone C22, which differs from the reference
sequence (NT_025028) only in the length of two poly(C) and poly
(T) sequences, both of which are located in intron 3 (Fig. S1). Clone
C22 contains 13 C and 23 T nucleotides compared with 11 C and 24
T in the reference sequence. In our sequence data from EPP patients
and non-porphyric individuals from Switzerland and Israel, the
length of the poly(C) tract varies from 10 to 16 and that of poly(T)
from 22 to 24 (Barman et al., 2009). Most importantly, the
combination of 13 C and 23 T found in clone C22 is naturally present
in several individuals of this cohort.

The Fech knock-in mouse line was then generated by Ozgene
(Bentley, WA, Australia). The targeting vector for homologous
recombination in mouse ES cells was generated by assembling in
multiple steps: (1) A 1151 bp KpnI-NheI fragment containing the
interior of human FECH intron 3 was amplified by PCR from clone
C22. (2) Two synthetic DNA fragments containing the hybrid
mouse–human and human–mouse exons 3 and 4 were joined
upstream and downstream of the human intron 3 fragment via the
KpnI and NheI sites, respectively. The mouse and human parts were
fused at the BspHI and BamHI sites of the two exons, respectively.
The sequence of this part of the targeting vector is shown in Fig. S2.
(3) A 1769 bp PacI fragment containing a PGK promoter/neomycin
resistance gene cassette flanked by loxP sites was added
downstream of the hybrid exon 4 fragment. The neomycin
resistance gene was thereby introduced in the reverse orientation
respective to the Fech sequences (Fig. 1). (4) Mouse genomic DNA
fragments of ∼6 kbp containing the flanking parts of the Fech gene
including exons 2 and 5 (obtained by PCR from cosmid clones)
were then joined to both sides of this intermediate assembly to serve
as homology arms for recombination. Details of the cloning
procedure are available on request.

After validation by sequencing and restriction digestion, the
targeting construct was linearized with PvuI and transfected into the
C57BL/6 mouse Bruce4 embryonic stem (ES) cell line (Köntgen
et al., 1993). After selection for growth in the presence of neomycin,
homologous recombinant ES cell clones were identified by
Southern blot. Moreover, total RNAs from ES cells containing the
correct integration of the human insert, genotype wt/C (clone II-
1C1), as well as from control ES cells (B4) were analyzed by
RT-qPCR. In particular, the aberrant splicing product (63 bp
insertion between exons 3 and 4) was detected, and the intensity of
the fluorescence signal was proportional to the amount of cDNA in
the reaction (data not shown). Sequencing of cloned RT-PCR
products from II-1C1 cells revealed the correctly spliced mouse
mRNA and the chimeric mRNA, as well as the aberrant splicing
product (data not shown). In addition, mRNAs with a skipping of
exon 3 were detected (Fig. S3).

Fig. 1. Schematic view of the humanized Fech exon 3-4 region joined to
a neomycin resistance cassette flankedby loxPsites.The exon 3-4 fragment
consists of mouse sequences from intron 2 up to the BspHI site in exon 3 and
from theBamHI site in exon 4 into intron 4 (Fig. S2). Mouse exon parts are shown
as black boxes, human exon parts as dark gray ones. Note that the Neo cassette
is in inverse orientation with respect to the Fech fragment. In the final targeting
construct, this part of the assembly was joined to 5′ and 3′ homology regions of
6120 and 6006 bp, containing exons 2 and 5, respectively.
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ES cells from the positive clone II-1C1 were then injected into
BALB/c hybrid blastocysts. Male chimeric mice were obtained and
crossed to C57BL/6J females to establish heterozygous germline
offspring carrying the humanized Fech allele on a pure C57BL/6J
background. The neomycin resistance cassette was then removed by
crossing with an OzCre mouse expressing Cre recombinase from the
Gt(ROSA)26Sor locus on a C57BL/6J background. The newmouse
line in a C57BL/6J background has been registered with the
designation C57BL/6J-FechTm1(FECH)Emi. The humanized c.315-
48C allele will be referred to as Emi hereafter. In these mice, we
confirmed the correct integration of the human sequences by
amplifying exons 3 and 4 with surrounding intronic sequences from
genomic DNA of an Emi/wt (C57BL/6J) mouse and sequencing of
these PCR products (Fig. S5 and Fig. S6, respectively).

Breeding properties of mice carrying the c.315-48C FECH
allele
By intercrossing heterozygous Emi/wt mice (C57BL/6J-
FechTm1(FECH)Emi line), we consistently obtained wt/wt and Emi/
wt pups in a ratio of 1:1.75 (Table 1). Importantly, no live Emi/Emi
micewere ever born. Upon dissection of pregnant females, Emi/Emi
embryos could be detected at embryonic day (E)11, at which time
they looked smaller – similar to embryos of the other genotypes
1-2 days previously. At E13, only remnants of Emi/Emi embryos
were detected within their placental structures.
Because of the inability to breed Emi/Emi mice and in order to

mimic the genotype of the vast majority of human EPP patients, we
decided to cross Emi/wt micewith homozygous animals of the Fech
mutant line m1Pas (C.Cg-Fechm1Pas/J) (Boulechfar et al., 1993;
Tutois et al., 1991). This allele will be referred to as Pas for short.
Such a cross produces F1 hybrids between C57BL/6J and BALB/c/J
that are genetically identical except for differences in the Fech gene.
The ratio between the two genotypes wt/Pas and Emi/Pas has so far
been 1:0.27 (Table 1), which is considerably lower than the
expected 1:1 ratio. In comparison, the birth frequency of Pas/Pas
homozygotes of the C.Cg-Fechm1Pas/J line under our breeding
conditions has been 0.5 of the expected 25% in Pas/wt×Pas/wt
crosses and 0.57 of the expected 50% in Pas/Pas×Pas/wt crosses
(Table 1), Emi/Emi and Emi/Pas animals are therefore subject to a
higher prenatal mortality rate than Pas/Pas animals.

Emi mice reproduce the alternative splicing associated with
the human c.315-48C allele but also skip exon 3 in the
majority of their Fech transcripts
To analyze the transcripts of the humanized Fech (Emi) allele, we
subjected liver cDNA from Emi/wt (C57BL/6J) and Emi/Pas (F1
hybrid) mice as well as from corresponding control mice that lack
the Emi allele to RT-PCR analysis. An amplification with primers
corresponding to the humanized parts of exons 3 and 4, which
contain several mismatches to the mouse sequence, generated
products only in cDNA of mice carrying the Emi allele (Fig. 2A,B).
Signals corresponding to correctly spliced and mis-spliced RNA
were obtained. These RNAs seemed to be present in very low

amounts, as the PCR products increased with each increment in
cDNA input, even though the PCR had been performed for 40
cycles which should be saturating for abundant transcripts. Further
evidence for a low abundance of Emi-specific transcripts came from
our attempts to use these and other primers to quantify both
transcript species by quantitative RT-PCR. Both were amplified
with Ct values of≥35 cycles (i.e. close to background) which has so
far precluded their reliable quantification (data not shown). To
confirm the splice junctions, we used spleen cDNA from an Emi/wt
(C57BL/6J) mouse to prepare PCR products extending from the
humanized part of exon 3 to exon 5 and corresponding to correctly
and aberrantly spliced Emi-specific transcripts. Direct sequencing
of these PCR products confirmed the expected splicing (Fig. 2C; 2D
shows the sequences of the exons 2 to 4).

Because preliminary experiments in the II-1C1 ES cells used to
generate the Emi mice had indicated that some of the Emi-derived
RNAs undergo exon 3 skipping, we analyzed total transcripts
arising from all Fech alleles by using PCR primers binding to
common parts of exons 2 and 4. This revealed that all mice carrying
the Emi allele produce both exon 3-containing and exon 3-skipped
RNA (Fig. 2E; confirmed by sequencing in Fig. 2F). In contrast, we
could not detect any exon 3 skipping in mice that contain
combinations of wt and Pas Fech alleles (Fig. 2E) or in
immortalized lymphoblasts from a human individual with two
c.315-48C alleles (Fig. S4). Considering that shorter amplicons tend
to be replicated more efficiently than longer ones, the exon 3-
containing and -lacking RNAs appear to be present in Emi/wt or
Emi/Pas mice in approximately equal amounts. Moreover, a band
corresponding to longer, aberrantly spliced but exon 3-containing,
Emi transcripts could not be detected on such gels. This implies that
only a very small fraction of Emi-derived RNAs contains exon 3 that
is either correctly or aberrantly spliced to exon 4, whereas the
majority lacks exon 3. In contrast, there is a weaker band for full-
length and exon 3-skipped RNAs of mice carrying the Emi allele,
which corresponds in size and sequence to a splicing product
linking exon 2 to the aberrant 3′ ss upstream of exon 4 (Fig. 2E,F).

Morphological features, tissue and blood parameters of Emi/
Pas mice
The most salient feature of Emi/Pas F1 hybrid mice compared with
their healthy Pas/wt littermates, is a retarded growth and reduced body
size and mass. This difference is small but already significant shortly
after birth, and it becomes more pronounced with age (Fig. 3A).
Moreover, the livers and spleens of these mice are enlarged. These
features are most apparent when the organ mass is displayed in
relation to body mass (Fig. 3B,C). An elevated liver and spleen mass
was also measured in our Pas/Pas (BALB/c/J) mice, in agreement
with published data (Tutois et al., 1991). Importantly, the increase in
liver and spleen mass was more pronounced in Emi/Pas F1 hybrids
than in Pas/Pas homozygous mice. Amounting to ∼20% of the body
mass, the liver of Emi/Pas F1 animals was so big that it often became
perceivable by an enlarged abdomen. The liver tissue also appeared
more rigid upon palpation compared with the usual soft texture.

Table 1. Genotype ratios of mice used in this study

Cross Strain background wt/wt Emi/wt Emi/Emi Pas/wt Pas/Pas Emi/Pas
Litter size
(mean±s.d.) N

Emi/wt×Emi/wt C57BL/6J 1.00 1.75 0.00 – – – 5.06±1.95 154
Pas/wt×Pas/wt BALB/c 1.00 – – 2.08 0.50 – 6.14±2.23 43
Pas/Pas×Pas/wt BALB/c – – – 1.00 0.57 – 4.75±1.79 58
Emi/wt×Pas/Pas F1 hybrids – – – 1.00 – 0.27 5.13±1.90 42
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Microscopy analysis of Hematoxylin and Eosin-stained liver
sections revealed a pronounced hepatobiliary pathology in livers of
Emi/Pas F1 hybrids (Fig. 4). There was an increase in small cells
(presumably macrophages). Most prominently, many brown
pigment granules were present in biliary canaliculi and portal
macrophages. As they could not be stained with Prussian Blue (data
not shown), these granules probably represent PPIX deposits, as
observed in human EPP patients with a pronounced liver pathology
(Lecha et al., 2009).
Biochemical analyses of blood samples revealed that Emi/Pas F1

hybrids have extremely high levels of PPIX (Fig. 3D). The values
were 6- to 8-times higher than in Pas/Pas (BALB/c) mice, which also
had elevated PPIX levels as expected. Additionally, most of the Emi/
Pas F1 hybrids showed elevated serum bilirubin levels that tended to
increase with age (Fig. 3E). Even though this was also the case for
some of the Pas/Pas (BALB/c) mice (Fig. 3F), the levels reached in
Emi/Pas F1 hybrids were higher and the increase seemed to occur
earlier than in Pas/Pas animals. In such animals, jaundice was also
evident during post-mortem inspection by a yellowish taint of the
dermis, muscles and internal organs. In contrast, the serum levels of
the liver enzymes alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were not significantly different between the
various genotypes (data not shown). We also could not detect any
significant differences in serum iron concentration (data not shown).
Hematological indices revealed that Emi/Pas F1 hybrids have a

pronounced microcytic anemia. Red blood cell counts as well as
hematocrit, mean corpuscle (cell) volume (MCV), mean

corpuscular hemoglobin (MCH) and mean corpuscular
hemoglobin concentration (MCHC) were reduced (Table 2).
Moreover, the numbers of reticulocytes were elevated,
presumably to compensate for the lack of mature erythrocytes.
Interestingly, the number of platelets increased and eosinophils
decreased in Emi/Pas F1 animals. In contrast, we did not observe
any significant differences in blood cell composition between Emi/
wt and wt/wt mice of the C57BL/6J strain (data not shown).

Light sensitivity
Skin photosensitivity is the main clinical symptom of patients
suffering from EPP. To assess the degree of skin sensitivity of the
new EPPmouse model, we exposed small areas (1-3 cm2) of shaved
skin to various doses of 400-420 nm light. As expected, we did not
observe any severe effect of light on Pas/wt F1-hybrid control mice.
The only exception were two small lesions on one animal treated
with the highest light dose (data not shown) which might, however,
have been caused by the shaving. In sharp contrast, all tested light
doses elicited acute symptoms on the exposed skin areas of Emi/Pas
mice. Erythema and an orange exudate (which dried within 24 h)
became visible by 2-3 h post-exposure. Additionally, we observed
behavioral changes indicating pain. At doses of 1.69-2.3 J/cm2

(∼10 min exposure under our experimental conditions), we
recorded severe symptoms such as a hunched position, reduced
movement, occasional shivering, closed eyes and drawn back ears
that required both systemic and local analgesic treatment. At doses
of 0.51-0.68 J/cm2 (∼3 min exposure), the pain symptoms were

Fig. 2. Alternative splicing of transcripts from the humanized Fech allele in transgenicmice. (A,B) RT-PCR analysis (40 cycles) with primers specific for the
humanized allele of increasing amounts of total liver RNA from (A) Emi/wt and wt/wt C57BL/6J mice and (B) Emi/Pas and wt/Pas F1 hybrid mice. Both correctly
and aberrantly spliced transcripts are detected. A band migrating slightly above the aberrant one is due to heterodimer formation. (C) Sanger sequence traces of
PCR-amplified cDNA corresponding to correct and aberrant transcripts. The splice junctions are marked by a red arrow. (D) Sequence of exons 2 to 4 of the
humanized allele. The shading indicates mouse exon parts (dark blue), human exon parts (light blue) and the extra 63 nucleotides added as a result of aberrant
splicing (light green). Within the exons, single nucleotide differences between human and mouse are marked in red (all silent changes not affecting the protein
sequence). The c.315-48C polymorphism is highlighted in red and underlined. Magenta, underlined letters:BspHI andBamHI sites in exons 3 and 4. (E) RT-PCR
analysis (35 cycles) with primers in the common parts of exons 2 and 4 of total spleen RNA from multiple mice of the indicated genotypes. (F) Sanger sequence
traces demonstrating that the bands correspond to full-length FechmRNA [(2-)3-4], as well as exon 3-skipped mRNA spliced to the aberrant and correct 3′ ss (2-
ab4 and 2-4, respectively). For primer sequences, see Table S1.
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more moderate: the mice were frequently twitching and tried to lick
or scratch the light-exposed areas. In these cases, local analgesia
with cream was sufficient to control the pain. These pain symptoms
disappeared by 24 h post-exposure, but the morphological
alterations persisted for several days. After 4-7 days, the dried
exudate started to peel off. More strongly affected areas were
covered with a scab or showed small ulcerations in the process of
healing (Fig. 5). This light sensitivity of Emi/Pas F1 hybrids was
considerably stronger than that of Pas/Pas (BALB/c) animals tested
under the same conditions. Pas/Pas mice required light doses in
excess of 6 J/cm2 to produce similar skin alterations and generally
showed less-pronounced pain symptoms.

DISCUSSION
We have generated the first EPP mouse model that represents the
human inheritance pattern which was originally referred to as an
autosomal dominant trait with incomplete penetrance. In the 1980s,
Went and Klasen put forward a three-allele hypothesis to explain the
EPP phenotype as being the result of an interaction between wild-
type and mutated FECH alleles and a third, yet unknown, disease-
causing allele (Went and Klasen, 1984). It was not until 2002 that the
nature of the disease-causing ‘third allele’ was identified as a splice-

modulating single nucleotide polymorphism in intron 3 of the FECH
gene (c.315-48C) (Gouya et al., 2006, 2002). The combination of this
allele with a debilitating FECH mutation is the predominant genetic
cause of EPP. The availability of a mouse model for this inheritance
pattern is thus an important prerequisite for pre-clinical testing of EPP
therapies.

Our data demonstrate that both correct and aberrant splicing of the
human FECH intron 3 carrying the splice-modulating c.315-48C
polymorphism (Emi allele) do occur in the mouse background and
that the aberrant splice product is identical to that in humans
(Fig. 2A-C). However, the humanized Fech gene also undergoes a
second kind of alternative splicing – the skipping of exon 3 (Fig. 2E,F).
Additionally, a small amount of RNA gets spliced from exon 2 to
the aberrant 3′ ss generated by c.315-48C. Skipping of exon 3 is in
fact the predominant event, leaving only a very small proportion of
transcripts that undergo splicing from exon 3 to the aberrant and
correct splice acceptor sites of exon 4. The RNA that correctly joins
exons 2 and 4 appears to be stable, since it accumulates in
approximately equal amounts as the full-length transcripts that are
produced by the other (wt or Pas) allele. Its stability is expected,
because the non-inclusion of 120 nucleotides present in exon 3
retains the translational reading frame, so that the RNA will not be

Fig. 3. Growth, organ mass and biochemical
parameters of EPP mouse models. (A) Total body
mass of Emi/Pas and wt/Pas F1 hybrid mice. Liver
(B) and spleen (C) masses relative to total body mass.
(D) Total protoporphyrin IX concentration in EDTA-
anticoagulated blood samples. Pas, C.Cg-Fechm1Pas/
J line; Emi, C57BL/6J-FechTm1(FECH)Emi line; F1 hybrid,
cross betweenEmi/wt (C57BL/6) andPas/Pas (BALB/c).
P-values of two-tailed Mann–Whitney t-test are
indicated: ns, P>0.05; *P<0.05; **P<0.01; ***P<0.001.
(E,F) Plasma bilirubin concentration as a function of age
for F1 hybrid (E) and Pas (F) mice.
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subjected to NMD. Exon 3 encodes 40 amino acids from the
N-terminus of the mature protein. Based on the structure of human
ferrochelatase (Wu et al., 2001), deletion of this part should render
the protein non-functional. However, the altered protein might also
be eliminated because of mis-folding, instability and/or might fail to
get imported into mitochondria.
These findings underscore the difficulty to reproduce human

splicing mutations correctly in a different species such as the mouse.
Despite the fact that certain human splicing mutations have been
reproduced successfully (Gladman et al., 2010; Lewis et al., 1998),
engineering humanized genes in mice can lead to unforeseeable
splicing outcomes, as observed by Garanto et al. (2013) in their
attempt to produce a model for Leber congenital amaurosis. In their
case, a new aberrant exon was inserted into Cep290 transcripts.
Our finding that the Emi allele produces only very small amounts

of correctly spliced, exon 3-containing RNA that can be translated
into functional ferrochelatase explains the severity of the observed
phenotype. In contrast to human homozygous carriers of the splice-
modulating c.315-48C polymorphism who are asymptomatic or, in
rare cases, slightly symptomatic (Gouya et al., 2002; Schneider-Yin
et al., 2008), homozygous Emi/Emi (C57BL/6J) embryos die in
utero around day E12. Moreover, the Emi/Pas F1 hybrid mice
present a more severe EPP phenotype than Pas/Pas (BALB/c/J)

homozygotes. This is reflected in the reduced survival up to birth
(0.27 compared with ∼0.55; Table 1), growth retardation, higher
PPIX levels (Fig. 3), impaired hematological parameters (Table 2)
and the early onset of bilirubinemia and liver abnormalities (Fig. 3).
Since the Pas allele has been reported to produce ferrochelatase with
an activity of ∼6% of the wild-type enzyme (Boulechfar et al.,
1993), we assume that the amount of functional FECH enzyme
produced by the Emi allele is below this level. Finally, even in
heterozygous carriers of the Emi allele, which are asymptomatic for
most of the assessed parameters, we detected small significant
changes in relative spleen size and PPIX levels (Fig. 3C,D).

Despite the additional exon 3 skipping and the pronounced
symptomatic severity, the newly created Emi/Pas mouse model
reproduces important signs and symptoms of the human condition.
The most prominent symptom of human EPP, the very painful light
sensitivity, is faithfully reproduced in the Emi/Pas mouse model
(Fig. 5). In fact, the light sensitivity may be similar or even stronger
than that observed in human patients, as an exposure of only∼3 min
produced marked behavioral reactions and subsequent skin lesions.
The sensitivity of Emi/Pas F1 hybrid mice was at least three times
stronger than that manifested by Pas/Pas (BALB/c/J) mice (requiring
a 3.3-times shorter exposure while showing stronger symptoms).
However, these symptoms were only observed when the skin area
was closely shaved/epilated prior to exposure. Importantly, under our
normal housing/lighting conditions, neither Emi/Pas nor Pas/Pas
mice displayed any pain symptoms or developed reactions of fur-free
areas, such as ears, nose, feet or tail. This may vary from one mouse
facility to another, as skin lesions have previously been reported to
occur under normal housing and lighting conditions in the less light-
sensitive Pas/Pas mice (Tutois et al., 1991).

The Emi/Pas mouse model also exhibits a microcytic,
hypochromic anemia with lower hemoglobin, hematocrit, mean
corpuscular volume and mean cell hemoglobin, as can be expected
from a deficiency of heme biosynthesis. This anemia seen in Emi/
Pas mice is stronger than that observed in Pas/Pas mice (Tutois et al.,
1991) or in most EPP patients where the anemia is usually not
clinically relevant (Holme et al., 2007). In Emi/Pas mice, the
hemoglobin levels, hematocrits and red blood cell counts were
all reduced to 30-40% of the levels seen in wt/Pas control mice
(which lay in the normal range for BALB/c or C57BL/6 mice).
Additionally, reticulocytes were slightly elevated. Iron levels were
not significantly different between Emi/Pas and wt/Pas mice (data
not shown). However, as the erythropoiesis in mice differs from the
human, the direct comparison of the influence on hematological
parameters has to be further validated.

The increase in liver and spleen size are signs of a severe liver
injury, as seen in a minority (∼3.75%) of EPP patients (Anstey and
Hift, 2007; Doss and Frank, 1989; Rademakers et al., 1990).
Apparently, the liver injury in our Emi/Pas mouse model is purely
cholestatic as only bilirubin, not the transaminases, are elevated.
This cholestatic liver involvement results in the discoloration of the
liver and in deposits of brown pigments, presumably consisting of
protoporphyrin IX crystals. Hepatic protoporphyrin deposits are
typical in EPP-related liver damage and also occur in Pas/Pas mice
of older age (Abitbol et al., 2005; Tutois et al., 1991). However, the
liver symptoms of Emi/Pas mice are again stronger than those of
Pas/Pas mice, as seen by the strong and early increase in bilirubin
levels compared with the more moderate rise in older Pas/Pas mice
(Fig. 3E).

The strong contribution of exon 3 skipping to the phenotype of
Emi/Pas mice has consequences for the future use of this animal
model. The in vivo efficiency of therapeutic approaches targeting the

Table 2. Blood cell parameters of Emi/Pas F1 hybrid mice

wt/Pas Emi/Pas P-valuea

Red blood cells (×106/µl) 11.29 4.14 1.04×10−7

Hemoglobin (g/dl) 16.51 5.55 1.18×10−8

Hematocrit (%) 56.54 16.03 9.04×10−9

Mean cell volume (fl) 50.16 38.68 2.20×10−7

Mean cell hemoglobin (pg) 14.67 13.73 0.4420
Mean cell hemoglobin concentration
(g/dl)

29.23 35.70 0.0842

Reticulocytes (×103/µl) 291.01 512.50 1.64×10−4

Platelets (×103/µl) 63.00 214.00 0.0151
Eosinophils (×103/µl) 0.10 0.03 0.0048

P-values calculated by two-sided Student's t-test. Significant values are shown
in bold, non-significant ones in italics.

Fig. 4. Liver histology in EPPmousemodel.Representative images of H&E-
stained liver sections of wt/Pas and Emi/Pas F1 hybrid mice at two different
magnifications. Note the presence of small cells (presumably macrophages)
and brown inclusions (presumably PPIX deposits) in the Emi/Pas mouse.
Scale bars: 500 µm (top) and 200 µm (bottom).
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aberrant splicing process between exons 3 and 4 can be tested by a
specific RT-PCR assay, as shown in Fig. 2A,B; however, even if
they are successful, these approaches will probably not have a big
impact on clinical parameters. Possible solutions to this problem are
the creation of a more refined model that does not show exon 3
skipping or a simultaneous treatment that reduces this skipping along
with one correcting the aberrant splicing between exons 3 and 4.
However, this humanized model may also provide a useful

experimental system to study other questions related to EPP such as
EPP-related liver disease, novel treatment options for the intense
pain caused by light exposure (Babes et al., 2016) or further
investigations of the aberrant splicing itself. As previously shown in
cell culture studies, the alternative 3′ ss at position -63 of intron 3
appears to have a regulatory function, because it is regulated by the
availability of iron via the iron-, oxygen- and 2-oxoglutarate-
dependent dioxygenase JMJD6 (Barman-Aksözen et al., 2013).
Emi mice could be crossed with (conditional) knockout strains for
JMJD6 and/or its target, U2AF (also known as ZRSR1) or yet other
potentially involved gene products to investigate the influence of
these factors on splicing regulation of this human intron that plays
such a pivotal role in EPP.

MATERIALS AND METHODS
Cell lines
EBV-transformed lymphoblasts of non-porphyric human subjects
homozygous for the c.315-48C and c.315-48T allele, respectively, have
been described previously (Barman-Aksözen et al., 2013). Bruce4 is a
C57BL/6 mouse embryonic stem (ES) cell line used by Ozgene (Bentley,
WA, Australia) for homologous integration purposes (Köntgen et al., 1993).
The cell lines are checked for mycoplasma contamination on a regular
basis.

Mouse breeding and genotyping
The Emi strain containing a partly humanized Fech genewith the c.315-48C
variation (C57BL/6J-FechTm1(FECH)Emi) was generated by one of our groups
(J.B., X.S. and E.M.) in collaboration with Ozgene as described in the first
Results section. The Fech mutant strain m1Pas (Tutois et al., 1991) was
obtained after cryo-recovery, from Jackson Laboratories (Bar Harbor, ME,
USA; C.Cg-Fechm1Pas/J, 002662). F1 hybrids were generated by crossing
Emi/wt and Pas/Pas animals of these two lines. These F1 offspring were not
used for further breeding.

All mice were kept in individually ventilated cages under specific-
pathogen-free (SPF) conditions at the central animal facility of the
University of Berne, Switzerland. Animals affected by EPP (Pas/Pas and
Pas/Emi) were kept in the lower rows of cage racks but without further light
protection. Under normal lighting conditions in our facility (12 h:12 h light:
dark cycles), these EPP mice did not develop any skin irritations. All
procedures involving animals were performed in accordance with Swiss
animal protection law and according to our specific permission BE92/13.

Genomic DNA was isolated from toe clip biopsies, taken 1 week after
birth, by using the KAPA mouse genotyping kit (Kapa Biosystems,
Wilmington, MA, USA), according to the manufacturer’s protocol. For the
PCR reactions, 25 μl of reactants containing 1 μl extracted DNA, 500 nM of
the corresponding primers, 1.6 μMMgCl2 in 1× KAPA mix were incubated
for 15 s at 94°C, 15 s at 60°C, and 30 s at 72°C for 35 cycles. The mouse
Fech gene was amplified with primers binding upstream and downstream of
exon 3, respectively, which yield an amplicon of 313 bp. To detect the Pas
point mutation, which destroys the BspHI site in exon 3 (Boulechfar et al.,
1993), half of such a completed PCR reaction was digested with BspHI and
compared with undigested material by agarose gel electrophoresis. The
humanized Emi allele was detected in a PCR containing the two mouse
primers and a third, human-specific reverse primer that yields an amplicon
of 271 bp with the mouse forward primer. Additional amplifications with
primers specific for the Sry locus served to identify the sex of the animals
(Meyer et al., 2009). Primer sequences are listed in Table S1.

Collection of blood and tissue samples
Micewere sacrificed by CO2 inhalation and cervical dislocation. Themasses
of the entire body, liver and spleen were determined. Blood samples were
collected from the heart with glass capillaries and transferred into EDTA-
and heparin-coated tubes (MiniCollect Heparin or EDTA, Greiner Bio-One,
St Gallen, Switzerland). Livers and spleens were harvested for further
histological and RNA analysis.

Biochemistry and hematology of blood samples
Hematological analysis was performed in a IDEXX ProCyte Dx
Hematology Analyzer. Metal-free and zinc-bound protoporphyrin IX
were quantified in 50 µl EDTA-anticoagulated blood samples as
described by Rossi and Garcia-Webb (1968) with slight modifications.
Total bilirubin was measured in plasma samples by using the Bilirubin Total
Gen.3 kit on an automatic Analyzer Cobas c501 (Roche Diagnostics,
Rotkreuz, Switzerland). Transaminases ALT and ASTwere measured in the
same samples by using the ALTL and the ASTL kits, respectively, on Cobas
c501. All samples were diluted 1:4 with the Diluent Universal (Roche
Diagnostics, Rotkreuz, Switzerland) prior to the measurement in order to
reach the minimal volume required by the analyzer.

Histology
Liver samples were fixed with 4% paraformaldehyde (Sigma-Aldrich) for
24 h and embedded in paraffin. Sections were cut at 5 µm with a microtome
(Leica, Reichter-Jung, Supercut 2050) followed by staining with H&E
according to standard procedures.

RNA extraction and analysis
Mouse tissue samples from liver and spleen (20-30 mm3)were snap frozen and
crushed with a pestle (BioConcept 100539). RNAwas isolated in 1 ml Trizol
reagent (0.8 M guanidine thiocyanate, 0.4 M ammonium thiocyanate, 0.1 M
sodium acetate pH 5.0, 5% v/v glycerol, 38% v/v saturated acidic phenol,
5 mM EDTA, 0.5% sodium lauroylsarcosine, in diethylpyrocarbonate-treated
water). The samples were vortexed vigorously and kept for 5 min on ice. Then
200 µl chloroform was added, thoroughly mixed and, after an additional
incubation of 5 min, centrifuged for 15 min at 12,000 g. The aqueous phase

Fig. 5. Skin photosensitivity tests in EPP mouse model. Areas
of 1-3 cm2 on the back of F1 hybrid Emi/Pas and wt/Pas mice were
shaved and epilated, and exposed to light doses indicated on the
left. Photographs were taken at different times post-exposure to
document visible skin reactions and healing. The Emi/Pas mice
show erythema and an orange exudate at both light doses, which
forms a scab or small ulcerations in the process of healing by 4-7
days after exposure.
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was collected, and RNAwas precipitated by addition of 600 µl of isopropanol
for 10 min at room temperature. The precipitated RNA was centrifuged for
15 min at 12,000 g in 4°C, and the pellet was washed with 80% ethanol,
centrifuged for 5 min at 16,100 g, air-dried and resuspended in RNase-free
water.

Light-sensitivity tests
Small areas (1-3 cm2) on the backs of mice (always Pas/wt and Pas/Emi
together) were shaved and epilated with VEET cream. One day later, the
shaved skin area was exposed to light from a Megaman Plant Lamp
(BR0515P) for 3 or 10 min at a dose of 0.51-0.68 J/cm2 or 1.69-2.3 J/cm2,
respectively. The UV-B and UV-C light was filtered by a glass placed
between the mouse and the lamp to avoid burns. Pictures were taken at day 1
post-exposure and at later times to document the occurrence and healing of
skin symptoms. Pain symptoms were recorded by observation and in some
cases documented by video recording.
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Barman-Aksözen, J., Béguin, C., Dogar, A. M., Schneider-Yin, X. and Minder,
E. I. (2013). Iron availability modulates aberrant splicing of ferrochelatase through
the iron- and 2-oxoglutarate dependent dioxygenase Jmjd6 and U2AF65. Blood
Cells Mol. Dis. 51, 151-161.

Biolcati, G., Marchesini, E., Sorge, F., Barbieri, L., Schneider-Yin, X. and
Minder, E. I. (2015). Long-term observational study of afamelanotide in 115
patients with erythropoietic protoporphyria. Br. J. Dermatol. 172, 1601-1612.

Bloomer, J., Wang, Y. and Chen, D. (2008). Level of expression of the nonmutant
Ferrochelatase allele is a determinant of biochemical phenotype in a mouse
model of erythropoietic protoporphyria. Gene Regul. Syst. Biol. 2, 233-241.

Boulechfar, S., Lamoril, J., Montagutelli, X., Guenet, J.-L., Deybach, J.-C.,
Nordmann, Y., Dailey, H., Grandchamp, B. and de Verneuil, H. (1993).
Ferrochelatase structural mutant (Fechm1Pas) in the house mouse. Genomics
16, 645-648.

Doss, M. O. and Frank, M. (1989). Hepatobiliary implications and complications in
protoporphyria, a 20-year study. Clin. Biochem. 22, 223-229.

Garanto, A., vanBeersum, S. E. C., Peters, T. A., Roepman, R., Cremers, F. P. M.
and Collin, R. W. J. (2013). Unexpected CEP290 mRNA splicing in a humanized
knock-in mouse model for Leber congenital amaurosis. PLoS ONE 8, e79369.

Gladman, J. T., Bebee, T.W., Edwards, C., Wang, X., Sahenk, Z., Rich, M. M. and
Chandler, D. S. (2010). A humanized Smn gene containing the SMN2 nucleotide
alteration in exon 7 mimics SMN2 splicing and the SMA disease phenotype.Hum.
Mol. Genet. 19, 4239-4252.

Gouya, L., Puy, H., Robreau, A.-M., Bourgeois, M., Lamoril, J., Da Silva, V.,
Grandchamp, B. and Deybach, J.-C. (2002). The penetrance of dominant
erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat.
Genet. 30, 27-28.

Gouya, L., Martin-Schmitt, C., Robreau, A.-M., Austerlitz, F., Da Silva, V., Brun,
P., Simonin, S., Lyoumi, S., Grandchamp, B., Beaumont, C. et al. (2006).
Contribution of a common single-nucleotide polymorphism to the genetic
predisposition for erythropoietic protoporphyria. Am. J. Hum. Genet. 78, 2-14.

Harms, J., Lautenschlager, S., Minder, C. E. and Minder, E. I. (2009). An alpha-
melanocyte-stimulating hormone analogue in erythropoietic protoporphyria.
N. Engl. J. Med. 360, 306-307.

Holme, S. A., Worwood, M., Anstey, A. V., Elder, G. H. and Badminton, M. N.
(2007). Erythropoiesis and iron metabolism in dominant erythropoietic
protoporphyria. Blood 110, 4108-4110.
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...TCTGAGACTCTTCTTGGACCGAGACCTCATGA GTGAGATATCACTTCCTATTCAGAA

ATATAAACACCTCAATTATAACCTTGGCACTACATTGACATGTGTCTCTCAATTCTGTAG
TTTCAAACCAGTAAATAGTTTTAATGCGTATCTGGTAATGGTTAAACAGCAGCATTGTTT
TCTGTTGGATATCAGAAGGATATGATATCAGAAAATTGCAGGGGGAGAGAGCAAATAAGT
TAGTGGGGATTCTCCTTGAGCCCTTTGCTCCCCAGAGCCCTGGAAATTGCAGTTGTCTTG
ACATAGCCTAGGTACCTTTAAAGATTTTTAAAGATATATTTGTACTTGTCACTTAACGGC
TGATTAACACTCAGGGAAGCAATGATTATTATTCATTTGTACTATAAATATGGATTGTTG
CTGCCCTTCTTTTCCTTTCATCCTTCTTTCCCTTCTTCCTTCTCTCCTTTTTCTTTCAAA
ATAGATTTCTATTATGAAAAATTAGTACATGCATGGGATAAAAACTACAAATAGTATAAA
AGTAATTACAGTAAAAGGCAAGTGTCCCTTTCACCTTGCACTCCCAGTTATCCACCTGGA
GGAAAGCGCTGTTACATCCAGAAATAGTCCGTGCATATCCAAGCATACACATACATACAC
ACACACACGCGCACATACATACATACACACATGCACACCCCCCCCCCCCCACTTCGTTAC
ACAAATGTGAAGGTACTTATGTACTATATTTGAAACTTTCCTTTTTTTTTTTTTTTTTTT
TTTTACATACGTATACATGTGCCATGTTGGTGTGCTGCACCCATTAACTCGTCATTTACA
TTAGGTATATCTCCTAATGCTATCCCTCCCCTCTCCCCCCACTCCACGATAGGCCCTGGT
GTGTGATGTTCCCCTTCCTGTGTCCAAGTGTTCTCATTGTTCAATTCCCACCTATGAGTG
AGAACATGCGGTGTTTGGTTTTTTGTCCTTGTGATAGTTTGCTGAGAATGGTGGTTTCCA
GCTTCATCCATGTCCCTACAAAGGACATGAACTCATCCCTTTTTATGGCTGCATTAGTAT
TCCACATTTTCTTAATCCAGTCTATCATTGATGGACATTTGGGTTGGTTCCAAGTCTTTG
CTGTTGTGAATGTGTAAACTTAACACTGTATCTTGTTTCATAACGTTATATCGATATATA
GGTCTGGCTCATTTTTTGATTACTATTTAGAACTGCATCATATGGCTGTAACTTAATTTG
TTTAATCCATGCTTCATGGTGGACAATTAGTTTGTTTACAGTGTTGCAGTGAACATTCTT
GTGCATACATCTTTGCTCCTATATGCAAGTGTATCTATAAGATTAATAGACTTTATTTTT
TAAATTAAGAGAAATGTCTACTTCATTTGTCTTATATCCTAGTTCTCGTTAGGTGTGGGA
TCAAAATGTGTTACGCTAGTAGCTAGCGCACATCCAGGTTTCTCTGCATGGGTGTTGTGT
GTCCTGAATCTTCAGGTGTGCTGCTGGAACAGCTTGTGGAGCACAGCTGGGTATTCCTCA
GAGAGGGTATAGCTTTAGCTCCTTATTCTACAACAAGAGAGCTGGCTATTGTCAATGACC
TCAAGCTTCTGTTTTAAAGGCTTAATCTTGTTAGGCTCTCTAAAATTTTGCTTTTTTTCT

TTTTTATTGAGTAGAAAACATTTCTCAGGCTGCTAAGCTGGAATAAAATCCACTTACCTG

TATGTTAAATGATTTAGTAAGCTGGCACCATTCATCGCCAAACGCCGAACCCCCAAGATT

CAAGAGCAGTACCGCAGGATTGGAGGCGGATCCCCCATCAAGATATGGACTTCCAAGCAG

GTATGGTGTTTCTTGGAGAGGGCATGGTGAAGCTGCTGGATGAATTGTCCCCCAACACAG
CATTAACATGTAACTAGATTAGTTCTTTCGAAGTAGTTATGAAATTCAAAAGAGTAGTAG
ATGCTAAATGCTTCATATGTACTGGCAACTCAATTTGTGGTGTTTCTACATAATACATGG
TCACTTAATTTAGGTCTCCAGGCGTTATCCCTTGACCTTTAGCCTTTGCTATGACTTCTT
ACATTACAAGTAAAAAAAAGCTAAGGATTTGGGACATG... 

Figure S1. Sequence of clone C22 insert. Primers used for PCR amplification introduced restriction 
sites for XbaI and SalI immediately up- and downsteam of the shown sequence, respectively. The 
part of exon 3 and the entire exon 4 (light blue highlighting) are present. The extension of exon 4 
caused by aberrant splicing is highlighted in light green. The c.315-48C polymorphism is highlighted 
in red and underlined. Restriction sites for BspH1, KpnI, NheI and BamHI are shown in magenta. The 
GT and AG dinucleotides at the 5' and 3' splice sites are shown in bold, underlined letters. Note that 
the oligo-C and -T stretches (yellow highlighting) are 13 and 23 nucleotides in length compared to 11 
and 24, respectively, in the reference sequence (NT_025028). 
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GGCGCGCC GAGCAATTGAGGTCCGTTGATGCCAACATAGGGCTGGCCTAGAGACCAGAGT
CAGTGAAGAAGTGGAGGCCCTCTGTGCCTGAGGAGACAGCCCTGTGAGGGCAGCATCGGGC
CTTCGGGTTCTTATCAGCTGAAGTAATTTCTGCCCCGGAGCAAGTGAAAGTGTGGCAGTGA

ACTGTTTTATCTTGTGTAGGAAGCCAAAAACGGGCATATTGATGTTAAACATGGGAGGCCC

CGAAACCCTTGGAGAAGTTCAAGACTTTCTTCAGAGGCTCTTCCTGGACCGAGACCTCATG

A GTGAGATATATATAAACACCTCGATTATAACCTTGGCACTACATCACTTCCTATTCAGAA

TGACATGTGTCTCTCAATTCTGTAGTTTCAAACCAGTAAATAGTTTTAATGCGTATCTGGT
AATGGTTAAACAGCAGCATTGTTTTCTGTTGGATATCAGAAGGATATGATATCAGAAAATT
GCAGGGGGAGAGAGCAAATAAGTTAGTGGGGATTCTCCTTGAGCCCTTTGCTCCCCAGAGC
CCTGGAAATTGCAGTTGTCTTGACATAGCCTAGGTACCTTTAAAGATTTTTAAAGATATAT
TTGTACTTGTCACTTAACGGCTGATTAACACTCAGGGAAGCAATGATTATTATTCATTTGT
ACTATAAATATGGATTGTTGCTGCCCTTCTTTTCCTTTCATCCTTCTTTCCCTTCTTCCTT
CTCTCCTTTTTCTTTCAAAATAGATTTCTATTATGAAAAATTAGTACATGCATGGGATAAA
AACTACAAATAGTATAAAAGTAATTACAGTAAAAGGCAAGTGTCCCTTTCACCTTGCACTC
CCAGTTATCCACCTGGAGGAAAGCGCTGTTACATCCAGAAATAGTCCGTGCATATCCAAGC
ATACACATACATACACACACACACGCGCACATACATACATACACACATGCACACCCCCCCC
CCCCCACTTCGTTACACAAATGTGAAGGTACTTATGTACTATATTTGAAACTTTCCTTTTT
TTTTTTTTTTTTTTTTTTACATACGTATACATGTGCCATGTTGGTGTGCTGCACCCATTAA
CTCGTCATTTACATTAGGTATATCTCCTAATGCTATCCCTCCCCTCTCCCCCCACTCCACG
ATAGGCCCTGGTGTGTGATGTTCCCCTTCCTGTGTCCAAGTGTTCTCATTGTTCAATTCCC
ACCTATGAGTGAGAACATGCGGTGTTTGGTTTTTTGTCCTTGTGATAGTTTGCTGAGAATG
GTGGTTTCCAGCTTCATCCATGTCCCTACAAAGGACATGAACTCATCCCTTTTTATGGCTG
CATTAGTATTCCACATTTTCTTAATCCAGTCTATCATTGATGGACATTTGGGTTGGTTCCA
AGTCTTTGCTGTTGTGAATGTGTAAACTTAACACTGTATCTTGTTTCATAACGTTATATCG
ATATATAGGTCTGGCTCATTTTTTGATTACTATTTAGAACTGCATCATATGGCTGTAACTT
AATTTGTTTAATCCATGCTTCATGGTGGACAATTAGTTTGTTTACAGTGTTGCAGTGAACA
TTCTTGTGCATACATCTTTGCTCCTATATGCAAGTGTATCTATAAGATTAATAGACTTTAT
TTTTTAAATTAAGAGAAATGTCTACTTCATTTGTCTTATATCCTAGTTCTCGTTAGGTGTG
GGATCAAAATGTGTTACGCTAGTAGCTAGCGCACATCCAGGTTTCTCTGCATGGGTGTTGT
GTGTCCTGAATCTTCAGGTGTGCTGCTGGAACAGCTTGTGGAGCACAGCTGGGTATTCCTC
AGAGAGGGTATAGCTTTAGCTCCTTATTCTACAACAAGAGAGCTGGCTATTGTCAATGACC
TCAAGCTTCTGTTTTAAAGGCTTAATCTTGTTAGGCTCTCTAAAATTTTGCTTTTTTTCTT

TTTTATTGAGTAGAAAACATTTCTCAGGCTGCTAAGCTGGAATAAAATCCACTTACCTGTA

TGTTAAATGATTTAGTAAGCTGGCACCATTCATCGCCAAACGCCGAACCCCCAAGATTCAA

GAGCAGTACCGCAGGATTGGAGGCGGATCCCCCATCAAGATGTGGACTTCCAAGCAAGGAG

GTGTGCTCTTCTTCTTAGTAAGGCATGGTGAAGCTGCTGGATGAGTTATCCCCTGCCACAG

GCTGGGCTAGGCTCGTTACAGTAGGACTCAGGGTCAGGGGTGGACTGGGGTGGGCTGGGGG
CACCCCTGTAATCCCAGCACTCGGGGTGTGGGGGGGCAAAGGCAAGAAGATTCTTAATTAA 

Figure S2. Sequence of chimeric exon3-4 fragment used for the targeting construct. Fragments F1 
and F3 were generated by DNA synthesis which introduced restriction sites for AscI at the beginning 
of F3 and for PacI at the end of F1 (Italic letters, underlined). Fragment F2 was generated by PCR 
from the human genomic clone C22, The three fragments were joined via restriction sites for KpnI 
and NheI (underlined).  Exon parts from mouse are distinguished from human parts by a darker blue 
highlighting. The extension of exon 4 caused by aberrant splicing is shaded in light green. The c.315-
48C polymorphism is highlighted in red and underlined. 
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Figure S3. Sequencing of cDNA from clone II-1C1 showing skipping of exon 3 on the humanized 
FECH allele. Only the relevant exon-exon junction is shown. 

Figure S4. Use of the aberrant 3' splice site and lack of exon 3 skipping in immortalized human 
lymphoblast cells homozygous for the c.315-48C and c.315-48T FECH alleles. Total RNA from the 
lymphoblast cells (Barman-Aksözen et al., 2013) was subjected to RT-PCR with primers binding in 
exons 2 and 4, and the products were analyzed on a 1.5% agarose/TBE gel. The aberrant splicing 
product is faintly visible in C/C cells, but its quantity is reduced by nonsense-mediated mRNA decay. 
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Emi exon 3       TTCAAGAAAATGTCTGACTGACGTGGCCACAGACCGTTGTGAGGGAGGCGTTTTTCCTCT 
Emi ex3 fw       ----------------------------------------------------------CT 
Emi ex3 re       ------------------------------------------------------------ 

Emi exon 3       TGGTGTTGCTTCTTTCCAAATGACTCTGGTTTGTTTTCATGTTGTCAAAAATTAACCAAA 
Emi ex3 fw       TGGTGTTGCTTCTTTCCA-ATGACTCTGGTTTGTTTTCATGTTGTCAAAAATTAACCAAA 
Emi ex3 re       --------------------------------------------TCAAAAATTAACCAAA 

**************** 

Emi exon 3       ACAGGTTAGCACGTAAGTGTACTCTTCCATGGTATGTTATATTGCCAGCCAGACTGTGGA 
Emi ex3 fw       ACAGGTTAGCACGTAAGTGTACTCTTCCATGGTATGTTATATTGCCAGCCAGACTGTGGA 
Emi ex3 re       ACAGGTTAGCACGTAAGKKTACTNTTCCATGGTATGTTAWWTTGCCAGCCAGACTGKGGA 

*****************  **** ***************  *************** *** 

Emi exon 3       GGCTAGGGATACTACTAAACACCCACAGGAGAGTCCTCTACAGTGAAGGGAAGGCAAACA 
Emi ex3 fw       GGCTAGGGATACTACTAAACACCCACAGGAGAGTCCTCTACAGTGAAGGGAAGGCAAACA 
Emi ex3 re       GGCTAGGGATACTACTAAACMCCCMCAGGAGAGTCCTYTACAGTGAAGGGAAGGCAAACA 

******************** *** ************ ********************** 

Emi exon 3       GAACCTATTTAGCTTAGGAATAATTTCCTATGTGACCAAAGAGACGGGAACAGATGAAAG 
Emi ex3 fw       GAACCTATTTAGCTTAGGAATAATTTCCTATGTGACCAAAGAGACGGGAACAGATGAAAG 
Emi ex3 re       GAACCTATTTAGCTTAGGAATAATTTCCTATGTGACCAAAGAGACGGGAACAGATGAAAG 

************************************************************ 

Emi exon 3       AGCAAGCGATAGACTCGTCGAGGTGTTCAAATAAAAGGGGAACACTTCTCCGTGGCACAG 
Emi ex3 fw       AGCAAGCGATAGACTCGTCGAGGTGTTCAAATAAAAGGGGAACACTTCTCCGTGGCACAG 
Emi ex3 re       AGCAAGCGATAGACTCGTCGAGGTGTTCAAATAAAAGGGGAACACTTCTCCGTGGCACAG 

************************************************************ 

Emi exon 3       AGCTCACTCTGTGGTAGACTGTGCCGAGTATGTGAAGAATACAGGAAGTTCACCAAATAA 
Emi ex3 fw       AGCTCACTCTGTGGTAGACTGTGCCGAGTATGTGAAGAATACAGGAAGTTCACCAAATAA 
Emi ex3 re       AGCTCACTCTGTGGTAGACTGTGCCGAGTATGTGAAGAATACAGGAAGTTCACCAAATAA 

************************************************************ 

Emi exon 3       TGTTGAAGGTAAGATGTTAGGCTTTAATTTTAGCATACGAAGCAACCTTAACCTCTGGAA 
Emi ex3 fw       TGTTGAAGGTAAGATGTTAGGCTTTAATTTTAGCATACGAAGCAACCTTAACCTCTGGAA 
Emi ex3 re       TGTTGAAGGTAAGATGTTAGGCTTTAATTTTAGCATACGAAGCAACCTTAACCTCTGGAA 

************************************************************ 

Emi exon 3       AGCCAGACCTGCGTACTTAAACGAAGCACTAGCACCTACAGGTCTTTTGGCCACTGAACA 
Emi ex3 fw       AGCCAGACCTGCGTACTTAAACGAAGCACTAGYACCTACAGGTCTTTTGGCCACTGAACA 
Emi ex3 re       AGCCAGACCTGCGTACTTAAACGAAGCACTAGCACCTACAGGTCTTTTGGCCACTGAACA 

******************************** *************************** 

Emi exon 3       ATTTTTGATTTCTAAAACTTTCTGTCTCTAAAGAATTGGATCTTTGTTCAAGATTGACAG 
Emi ex3 fw       ATTTTTGATTTCTAAAACTTTCTGTCTCTAAAGAATTGGATCTTTGTTCAAGATTGACAG 
Emi ex3 re       ATTTTTGATTTCTAAAACTTTCTGTCTCTAAAGAATTGGATCTTTGTTCAAGATTGACAG 

************************************************************ 

Emi exon 3       AAAAAAATAGATATCAGTACTGGCGCGCCGAGCAATTGAGGTCCGTTGATGCCAACATAG 
Emi ex3 fw       AAAAAAATAGATATCAGTACTGGCGCGCCGAGCAATTGAGGTCCGTTGATGCCAACATAG 
Emi ex3 re       AAAAAAATAGATATCAGTACTGGCGCGCCGAGCAATTGAGGTCCGTTGATGCCAACATAG 

************************************************************ 

Emi exon 3       GGCTGGCCTAGAGACCAGAGTCAGTGAAGAAGTGGAGGCCCTCTGTGCCTGAGGAGACAG 
Emi ex3 fw       GGCTGGCCTAGAGACCAGAGTCAGTGAAGAAGTGGAGGCCCTCTGTGCCTGAGGAGACAG 
Emi ex3 re       GGCTGGCCTAGAGACCAGAGTCAGTGAAGAAGTGGAGGCCCTCTGTGCCTGAGGAGACAG 

************************************************************ 

Emi exon 3       CCCTGTGAGGGCAGCATCGGGCCTTCGGGTTCTTATCAGCTGAAGTAATTTCTGCCCCGG 
Emi ex3 fw       CCCTGTGAGGGCAGCATN-GNCCTTCGGGTTCTTATCAGCTGAAGTAATTTCTGCCMCGG 
Emi ex3 re       CCCTGTGAGGGCAGCATCGGGCCTTCGGGTTCTTATCAGCTGAAGTAATTTCTGCCCCGG 

*****************  * *********************************** *** 

Emi exon 3       AGCAAGTGAAAGTGTGGCAGTGAACTGTTTTATCTTGTGTAGGAAGCCAAAAACGGGCAT 
Emi ex3 fw       AGCAAGTGAAAGTGTGGCAGTGAACTGTTTTATCTTGTGTAGGAAGCCAAAAACGGGCAT 
Emi ex3 re       AGCAAGTGAAAGTGTGGCAGTGAACTGTTTTATCTTGTGTAGGAAGCCAAAAACGGGCAT 

************************************************************ 
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Emi exon 3       ATTGATGTTAAACATGGGAGGCCCCGAAACCCTTGGAGAAGTTCAAGACTTTCTTCAGAG 
Emi ex3 fw       ATTGATGTTAAACATGGSAGGCCCCGAAACCCTTGGAGAAGTTCAAGACTTTCTTCAGAG 
Emi ex3 re       ATTGATGTTAAACATGGGAGGCCCCGAAACCCTTGGAGAAGTTCAAGACTTTCTTCAGAG 

***************** ****************************************** 

Emi exon 3       GCTCTTCCTGGACCGAGACCTCATGACACTTCCTATTCAGAAGTGAGATATATATAAACA 
Emi ex3 fw       GCTCTTCCTGGACCGAGACCTCATGACACTTCCTATTCAGAAGTGRGATTTWTTTAAACM 
Emi ex3 re       GCTCTTCCTGGACCGAGACCTCATGACACTTCCTATTCAGAAGTGAGATATATATAAACA 

********************************************* *** * * *****  

Emi exon 3       CCTCGATTATAACCTTGGCACTACATTGACATGTGTCTCTCAATTCTGTAGTTTCAAACC 
Emi ex3 fw       CCTCGATTATAACCTTGGCACTACATTGA------------------------------- 
Emi ex3 re       CCTCGATTATAACCTTGGCACTACATTGACATGTGTCTCTCAATTCTGTAGTTTCAAACC 

*****************************                               

Emi exon 3       AGTAAATAGTTTTAATGCGTATCTGGTAATGGTTAAACAGCAGCATTGTTTTCTGTTGGA 
Emi ex3 fw       ------------------------------------------------------------ 
Emi ex3 re       AGTAAATAGTTTTAATGCGTATCTGGTAATGGTTAAACAGCAGCATTGTTTTCTGTTGGA 

Emi exon 3       TATCAGAAGGATATGATATCAGAAAATTGCAGGGGGAGAGAGCAAATAAGTTAGTGGGGA 
Emi ex3 fw       ------------------------------------------------------------ 
Emi ex3 re       TATCAGAAGGATATGATATCAGAAAATTGCAGGGGGAGAGAGCAAATAAGTTAGTGGGGA 

Emi exon 3       TTCTCCTTGAGCCCTTTGCTCCCCAGAGCCCTGGAAATTGCAGTTGTCTTGACATAGCCT 
Emi ex3 fw       ------------------------------------------------------------ 
Emi ex3 re       TTCTCCTTGAGCCCTTTGCTCCCCAGAGCCCTGGAAATTGCAGTTGTCTTGACATAGCCT 

Emi exon 3       AGGTACCTTTAAAGATTTTTAAAGATATATTTGTACTTGTCACTTAACGGCTGATTAACA 
Emi ex3 fw       ------------------------------------------------------------ 
Emi ex3 re       AGGTACCNTAAN------------------------------------------------ 

Emi exon 3       CTCAGGGAAGCAATGA 
Emi ex3 fw       ---------------- 
Emi ex3 re       ---------------- 

Figure S5. Sequencing of a 1276 bp PCR fragment encompassing exon 3 of the humanized FECH 
allele. Exon 3 with surrounding intronic sequences was amplified from genomic DNA of an Emi/wt 
(C57BL/6J) mouse. The theoretical sequence is shown on top of this CLUSTAL W alignment. Primer 
sequences are highlighted with a gray background.  The sequences obtained from the purified PCR 
product by using the same forward and reverse primers are shown below. Exon 3 is indicated in blue 
with the BspH1 site in magenta. 
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Emi exon 4          AGGTGTGGGATCAAAATGTGTTACGCTAGTAGCTAGCGCACATCCAGGTTTCTCTGCATG 
Emi pre ex4 fw ----------------------------------------------GGTTTCTCTGCATG 
nir-mfech-int4-2 ------------------------------------------------------------ 

************** 

Emi exon 4          GGTGTTGTGTGTCCTGAATCTTCAGGTGTGCTGCTGGAACAGCTTGTGGAGCACAGCTGG 
Emi pre ex4 fw GGTGTTGTGTGTCCTGAATCTTCAGGTGTGCTGCTGGAACAGCTTGTGGAGCACAGCTGG 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4          GTATTCCTCAGAGAGGGTATAGCTTTAGCTCCTTATTCTACAACAAGAGAGCTGGCTATT 
Emi pre ex4 fw GTATTCCTCAGAGAGGGTATAGCTTTAGCTCCTTATTCTACAACAAGAGAGCTGGCTATT 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4          GTCAATGACCTCAAGCTTCTGTTTTAAAGGCTTAATCTTGTTAGGCTCTCTAAAATTTTG 
Emi pre ex4 fw GTCAATGACCTCAAGCTTCTGTTTTAAAGGCTTAATCTTGTTAGGCTCTCTAAAATTTTG 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4          CTTTTTTTCTTTTTTATTGAGTAGAAAACATTTCTCAGGCTGCTAAGCTGGAATAAAATC 
Emi pre ex4 fw CTTTTTTTCTTTTTTATTGAGTAGAAAACATTTCTCAGGCTGCTAAGCTGGAATAAAATC 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4 CACTTACCTGTATGTTAAATGATTTAGTAAGCTGGCACCATTCATCGCCAAACGCCGAAC 
Emi pre ex4 fw      CACTTACCTGTATGTTAAATGATTTAGTAAGCTGGCACCATTCATCGCCAAACGCCGAAC 

************************************************************ 

Emi exon 4          CCCCAAGATTCAAGAGCAGTACCGCAGGATTGGAGGCGGATCCCCCATCAAGATGTGGAC 
Emi pre ex4 fw CCCCAAGATTCAAGAGCAGTACCGCAGGATTGGAGGCGGATCCCCCATCAAGATGTGGAC 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4          TTCCAAGCAAGGAGAAGGCATGGTGAAGCTGCTGGATGAGTTATCCCCTGCCACAGGTGT 
Emi pre ex4 fw TTCCAAGCAAGGAGAAGGCATGGTGAAGCTGCTGGATGAGTTATCCCCTGCCACAGGTGT 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4          GCTCTTCTTCTTAGTGCTGGGCTAGGCTCGTTACAGTAGGACTCAGGGTCAGGGGTGGAC 
Emi pre ex4 fw GCTCTTCTTCTTAGTGCTGGGCTAGGCTCGTTACAGTAGGACTCAGGGTCAGGGGTGGAC 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4          TGGGGTGGGCTGGGGGCACCCCTGTAATCCCAGCACTCGGGGTGTGGGGGGGCAAAGGCA 
Emi pre ex4 fw TGGGGTGGGCTGGGGGCACCCCTGTAATCCCAGCACTCGGGGTGTGGGGGGGCAAAGGCA 
nir-mfech-int4-2 ------------------------------------------------------------ 

************************************************************ 

Emi exon 4          AGAAGATTCTTAATTAAATAACTTCGTATAATGTATGCTATACGAAGTTAT--------- 
Emi pre ex4 fw AGAAGATTCTTAATTAAATAACTTCGTATAATGTATGCTATACGAAGTTATTTTAATTAA 
nir-mfech-int4-2 ------------------------------------------------------------ 

*************************************************** 

Emi exon 4          ------------------------------------GTGTGTGTGTGTGTGTGTGTGTGT 
Emi pre ex4 fw GGCGCGCCGCGGCCGCCCTAGGTCTGCACTAGCAGAGTGTGTGTGTGTGTGTGTGTGTGT 
nir-mfech-int4-2 --------------------------------CAGAGNGTGTGTGTGTGTGTGTGTGTGT 

***** ********************** 

Emi exon 4          GTGTGTGTGTGTGTGTGTGTGTGTGAGTGTGTGTGTGTGTGTGTGTGTAAGGGAGAGGGA 
Emi pre ex4 fw GTGTGTGTGTGTGTGTGTGTGTGTGNGTGTGTGTGTGTGTGTGTGTGTNA---------- 
nir-mfech-int4-2 GTGTGTGTGTGTGTGTGTGTGTGTGAGTGTGTGTGTGTGTGTGTGTGTAAGGGAGAGGGA 

************************* ********************** *********** 

Emi exon 4          GAGTTCTCAAGGCACTATCCTCTGACTGTGAAACTTTCAAAAATGACTTCCAGTGCTACA 
Emi pre ex4 fw ------------------------------------------------------------ 
nir-mfech-int4-2 GAGTTCTCAAGGCACTATCCTCTGACTGTGAAACTTTCAAAAATGACTTCCAGTGCTACA 

************************************************************ 
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Emi exon 4          AGTAAACAAACTGAAATGCCAGAAAGCGTTTCAAAAGGAAGTTTAAAATTAAGTTGAGCT 
Emi pre ex4 fw ------------------------------------------------------------ 
nir-mfech-int4-2 AGTAAACAAACTGAAATGCCAGAAAGCGTTTCAAAAGGAAGTTTAAAATTAAGTTGAGCT 

************************************************************ 

Emi exon 4          AGTTTATAAAGAAGAGGCAATATTCCGTGCACAGAGGGTAAGACTTGCTGTGGCCTTTTC 
Emi pre ex4 fw ------------------------------------------------------------ 
nir-mfech-int4-2 AGTTTATAAAGAAGAGGCAATATTCCGTGCACAGAGGGTAAGACTTGCTGTGGCCTTTTC 

************************************************************ 

Emi exon 4          TTCTAGTTGGATGGTAAATAGCTGGGCATTTAGAGAAGTTGTTGGCTGGTGTCACTGGGC 
Emi pre ex4 fw ------------------------------------------------------------ 
nir-mfech-int4-2 TTCTAGTTGGATGGTAAATAGCTGGGCATTTAGAGAAGTTGT-GGC-------------- 

****************************************** *** 

Emi exon 4          AGCCTTCAGTCACACTTTCAGCCAACAGCACC 
Emi pre ex4 fw -------------------------------- 
nir-mfech-int4-2 -------------------------------- 

Figure S6. Sequencing of a 1071 bp PCR fragment encompassing exon 4 of the humanized FECH 
allele. Exon 4 with surrounding intronic sequences was amplified from genomic DNA of an Emi/wt 
(C57BL/6J) mouse. The theoretical sequence (Emi exon 4) does not match the sequences obtained 
with the two primers in a highly repetitive region downstream of exon 4, but the two sequences 
obtained from the PCR product show a good overlap. Primer sequences are highlighted with a gray 
background.  Exon 4 is indicated in blue with the BamH1 site in magenta. The extra 63 bp between 
the aberrant and correct 3’ splice sites is highlighted in light green, and the c.315-48C nucleotide is 
shown in red and underlined. 
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Table S1. Oligonucleotides used in this paper 

Name Sequence (5' to 3') Amplicon(s) 
Genotyping murine/humanized Fech gene: 1 
FECH mm Fw GAGGAGACAGCCCTGTGAGGG 313 bp (mouse)  

271 bp (humanized 
allele) 

FECH mm Re CAGGTGCTGCCGTGACCACGG 
FECH hs re GTGCCAAGGTTATAATTGAGG 
Genotyping (sex): 
Sry 5’ AGCTCTTACACTTTAAGTTTTGACTTC 600 bp (male) 

no band (female) Sry 3’ GCAGCTCTACTCCAGTCTTGCC 
amplification/cloning of C22: 
FECH XbaI Fw GTACATCTAGATCTGAGACTCTTCTTGGACCG 2157 bp 
FECH SalI Re GTACAGTCGACCATGTCCCAAATCCTTAGCTT 
RT-PCR of correctly & aberrantly spliced Emi mRNA: 2 
Emi spec fw-3 GAGACCTCATGACACTTCCT 169 bp (aberrant) 

106 bp (correct) 
(exons 3-4) 

Emi spec rv-2 GGGGATCCGCCTCCAATC 

RT-PCR of total mouse Fech transcripts: 
Emi ex2 fw GGAGAAGGTACATCATGCCAAGAC 386 bp (aberrant) 

323 bp (correct) 
203 bp (ex 3 skipped) 
(exons 2-4) 

Mm-FECH-ex4-Re CTGTGGCAGGGGATAACTC 

RT-PCR of human FECH transcripts: 
Fech ex2 Hs Fw CACAGAAACAGCCCAGCATG 378 bp (aberrant) 

315 bp (correct) 
195 bp (ex 3 skipped) 
(exons 2-4) 

FECH ex4 rev GACAATTCATCCAGCAGCTTC 

1 The wild-type mouse and humanized alleles, but not the Pas allele, are cleavable by Bsp HI. 
2 Nucleotides shown in red are human-specific. 
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