164 research outputs found

    A Spitzer IRS Spectral Atlas of Luminous 8 micron Sources in the Large Magellanic Cloud

    Full text link
    We present an atlas of Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of highly luminous, compact mid-infrared sources in the Large Magellanic Cloud. Sources were selected on the basis of infrared colors and 8 micron (MSX) fluxes indicative of highly evolved, intermediate- to high-mass stars with current or recent mass loss at large rates. We determine the chemistry of the circumstellar envelope from the mid-IR continuum and spectral features and classify the spectral types of the stars. In the sample of 60 sources, we find 21 Red Supergiants (RSGs), 16 C-rich Asymptotic Giant Branch (AGB) stars, 11 HII regions, 4 likely O-rich AGB stars, 4 Galactic O-rich AGB stars, 2 OH/IR stars, and 2 B[e] supergiants with peculiar IR spectra. We find that the overwhelming majority of the sample AGB stars (with typical IR luminosities ~1.0E4 L_sun) have C-rich envelopes, while the O-rich objects are predominantly luminous RSGs with L_IR ~ 1.0E5 L_sun. We determine mean bolometric corrections to the stellar K-band flux densities and find that for carbon stars, the bolometric corrections depend on the infrared color, whereas for RSGs, the bolometric correction is independent of IR color. Our results reveal that objects previously classified as PNe on the basis of IR colors are in fact compact HII regions with very red IRS spectra that include strong atomic recombination lines and PAH emission features. We demonstrate that the IRS spectral classes in our sample separate clearly in infrared color-color diagrams that use combinations of 2MASS data and synthetic IRAC/MIPS fluxes derived from the IRS spectra. On this basis, we suggest diagnostics to identify and classify, with high confidence levels, IR-luminous evolved stars and HII regions in nearby galaxies using Spitzer and near-infrared photometry.Comment: 46 pages, 9 figures; accepted for publication in AJ; abstract abridge

    Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC

    Get PDF
    The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb−1 of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than O(10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection

    Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR

    Get PDF
    E-2-Tricyanovinyl-3-n-hexyl-5-[4-{bis(4-n-butylphenyl)amino}-2-methoxystyryl]-thiophene, 1, has previously been used to demonstrate applications relying on frequency tripling of 1.55 μm light. Here we report the synthesis and chemical characterisation of 1, along with quantum-chemical calculations and additional experimental investigations of its third-order nonlinear properties that give more insight into its frequency tripling properties. Although 1 can be processed into amorphous films, crystals can also be grown by slow evaporation of solutions; the crystal structure determined by X-ray diffraction shows evidence of significant contributions from zwitterionic resonance forms to the ground-state structure, and reveals centrosymmetric packing exhibiting π–π and C–H···N≡C interactions. Both solutions and films of 1 exhibit near-infrared two-photon absorption into the low-lying one-photon-allowed state with a peak two-photon cross-section of cɑ. 290 GM (measured using the white-light continuum method with a pump wavelength of 1800 nm) at a transition energy equivalent to degenerate two-photon absorption at cɑ. 1360 nm; two related chromophores are also found to show comparable near-IR two-photon cross-sections. Closed-aperture Z-scan measurements and quantum-chemical calculations indicate that the nonlinear refractive index and third-harmonic generation properties of 1 are strongly dependent on frequency in the telecommunications range, due the aforementioned two-photon resonance
    • …
    corecore