621 research outputs found
Recommended from our members
Characteristics of a High Energy µ+µ- Collider Based on Electro-Production of Muons
The helium trimer with soft-core potentials
The helium trimer is studied using two- and three-body soft-core potentials.
Realistic helium-helium potentials present an extremely strong short-range
repulsion and support a single, very shallow, bound state. The description of
systems with more than two helium atoms is difficult due to the very large
cancellation between kinetic and potential energy. We analyze the possibility
of describing the three helium system in the ultracold regime using a gaussian
representation of a widely used realistic potential, the LM2M2 interaction.
However, in order to describe correctly the trimer ground state a three-body
force has to be added to the gaussian interaction. With this potential model
the two bound states of the trimer and the low energy scattering helium-dimer
phase shifts obtained with the LM2M2 potential are well reproduced.Comment: 15 pages, 3 figures, submitted to Few-Body System
An rf-linac, FEL buncher
Abstract We describe a means of producing a train of 40 kA pulses of 3 ps duration as the drive beam for CLIC using an rf linac driven free electron laser (FEL) buncher. Potential debunching effects are discussed. Finally we describe a low energy test experiment
Recommended from our members
Economics of Induction Linac Drivers for Radiation Sources
Recent developments in high reliability components for linear induction accelerators (LIA) make possible the use of LIAs as large-scale, economical sources of radio-frequency (rf) power for many applications. One particularly attractive example of interest to high energy physicists is a ''two-beam accelerator'' version of a linear e/sup +/-e/sup -/ collider at TeV energies in which the LIA is configured as a monolithic relativistic klystron operating at 10 to 12 GHz. Another example of keen interest to the fusion community is the use of the LIA to drive a free-electron laser operating at 200 to 500 GHz for use in heating fusion plasma via electron resonance cyclotron heating. This paper briefly describes several potential uses of LIA radiation sources. It discusses the physical basis for scaling our present experience with LIAs to the operating characteristics applicable to large-scale sources of rf power and synchrotron radiation. 14 refs., 6 figs., 1 tab
Recommended from our members
Physically Transparent Formulation of a Free-Electron Laser in the Linear Gain Regime
Recommended from our members
Compact X-Ray Lasers in the Laboratory
Compact x-ray lasers in the laboratory can be produced with ultrahigh gradient rf linacs based on recent advances in linac technology by an SLAC-LLNL-LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x rays in the range of 2--10 nm by passage through short period, high field strength wigglers. Alternatively, the beam can pump a low density dielectric to produce x rays via recombination. Such linear light sources can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 15 refs., 7 figs., 3 tabs
- …