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The transverse stability of a relativistic electron beam propagating in an evacuated, smooth pipe offinite conductivity
is examined. Exact and asymptotic solutions are obtained in the limit of continuous external focusing. An exact
solution for the transport through a single focusing period with discrete focusing is extended to provide an asymptotic
solution for a multiperiod transport system. It is found in both cases that focusing can only reduce the growth rate;
it cannot suppress the instability. Applications to pulsed electric-power transmission are discussed.

I. INTRODUCTION

The displacement of the centroid of a relativistic
electron beam from the axis of an evacuated con
ducting pipe produces charges and currents in the
pipe walls which will affect the subsequent mo
tion of the beam. The behavior of the beam in
the presence of these wall charges and currents,
in addition to various focusing forces, is exam
ined.

The surface charges which are induced on the
inner pipe wall by the nonaxisymmetric compo
nent of the beam's electric field generate an elec
tric field which reacts on the beam to pull it fur
ther along in the direction of its initial
displacement. The magnetic field of the displaced
beam generates surface currents in the pipe
which set up their own magnetic fields that act
to push the beam in a direction opposite to that
of its original displacement. At the front, or head
of the beam, these forces cancel to within a factor
of 1/'Y2 resulting in a net destabilizing force. Here
'Y is the particle's energy in units of the rest en
ergy.

Gradually, the magnetic field of the beam dif
fuses through the conducting pipe wall. As this
occurs, the induced current decreases, reducing
the magnetic restoring force on the beam. The
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electric force, however, does not weaken. Thus,
the net destabilizing force grows with distance
back from the head of the beam.

In Section II we formulate the beam dynamics
problem for continuous focusing. An exact so
lution is then presented in Section III. An asymp
totic solution is then given in Section IV and the
growth of the beam displacement for parameters
of interest for pulsed electric-power transmission
is discussed. In Section V the problem is refor
mulated for the case of discrete focusing ele
ments. An exact and an asymptotic solution are
obtained. In Section VI the relationship between
the continuous focusing and discrete focusing
solutions is exhibited. Finally, the conclusions
are discussed in Section VII. The use of various
focusing schemes will be shown to reduce the
growth rate. However, focusing cannot suppress
the instability.

II. FORMULATION OF THE PROBLEM
FOR CONTINUOUS FOCUSING

Consider the geometry shown in Fig. 1. The beam
is slightly displaced in the positive x-direction.
The resulting beam current and charge densities
may be thought of as those arising from the un
displaced beam plus surface contributions of the
form J = (I~/7ra2) 8(r - a) cos <t> ez and p =
(I~/7ra2v) 8(r - a) cos <t>. Here a is the beam ra
dius, I the beam current and ~ is the displacement
of the beam centroid from the pipe axis (z-axis).
More precisely ~(z,t) = ~(z,t) ex, v is the z-com
ponent of the beam velocity and <t> is the azi-
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The equation of motion for the beam displace
ment now becomes

Only the case of positive focusing is of practical
interest.

(1)

we? < o.

<00
2 = 0, and

negative focusing:

positive focusing:

critical focusing:

d2~ 2t = OS/2 Jf a~~ dt' (2)
dt 2 + <00 ~ - x at'

where <002 == kf32 V 2 - 2Je/(mvb2~3). The ~olutions

to Eq. (2) fall into three classes, depending upon
the value of <00

2
• We have:

+ 4Iev Jf a~~ dt'
~1Tcb3(J'1/2m -x at l

in which m and e are the electron rest mass and
charge, respectively, and k~1V2~ is a focusing
term similar to the restoring force in a simple
harmonic oscillator. This term represents the ef
fects of allowing the number of discrete ·~Ienses"
to increase without limit in such a way that the
product of the iht@t=lens ~istance ~nd th~ fo.cal
length remains constant. We consider this lIm-
iting case itt Section VI. , _. .
Notin~ that 4Iev/(~7rcb3(J'1/2m)has the dimen-

sions of seC - 5/2 we define a frequency

, 4evlOS/2 ==== """",-.-~,--.-=----=--~~

- ~m1fcb3(J'1/2'

The equation for ~ then can be written as

J2~ 2 2· _ 21e t
-d·2 + k f3 V ~ - b2 3 . ~

t v ~ m

[
21e

F(z,t) = ex vb2-y2 ~(z,t)

+ .4lev Jf a~~ dt']'
1Tcb3(J'1/2 - x at'

The integral term in the expression for B rep
resents the weakening of the magnetic field with
distance back from the h€ad of the beam Gaused
by the induced current diffusing into the pipe
wall. The resulting Lorentz force acting upon the
beam is

2/ 4/
B = -b2 ~(z,t) ey - b3 . 1/2 ey

C 1T (J'

Here band (1 are the pipe radius and conductiv
ity, respectively ,.and c is the speed of light. Gaus
sian units are used in this paper.

2/
E =: vb2 ~(z,t) ex.

t It is assumed in the derivation that the fields which pre
cede the beam can be neglected either because the speed of
the beam is so close to that of light or by noting that, in any
case, the fields leading the pulse cannot extend more than a
few beam radii in front of the head. If aiL ~ I. where L is
the beam length, then these fields cannot have an appreciable
effect on the beam dynamics.

x Jf a.~ ~dt'
-x at'

muthal angle measured from the positive x-axis.
The quantity o(x) is the Dirac delta function.

Only the fields due to the displacement of the
beam centroid from the pipe axis need be con
siderecL The fields produced by these beam
charge and current densities induce correspond
in~ ~harge and current densities in the walls. The
fields produced by these induced charge and cur
rent densities were computedt to be I

FIG URE 1 Equivalent surface charg€ and current density
layers of beam displaced frorft th~ axis of a conducting pipe.
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Some information on the growth rate of the
instability may be obtained from dimensional ar
guments. For simplicity consider the critical fo
cusing case:

it n
x - (t' - z/v)n12 - 1 (t - t') 112 dt, ,

zlv 2

where we have used the fact that

a
- u - I(t - z/v) = 5(t - z/v).
at

Equating coefficients of equal powers of T yields

d 2go 2
for n = 0: dz 2 (z) + ko go(z) = 0, (6)

After rewriting Eq. (4) in terms of the retarded
time T = t - z/v, we can evaluate the integral
on the right-hand side by use of the convolution
theorem for Laplace transforms.

The resulting differential equation for the func
tions gn (z) is

(7)

(5)

for n > 0:

(
b ) 3/2

X Ie; (meters).

3 8 1/2 ( ) 1/4• ~ (T

II( = Il!J.. 'rl~~ee) 1017 (sec - I)

III. EXACT SOLUTION FOR
CONTINUOUS FOCUSING

The right-hand side of this expression represents
the effects of the diffusion of the B-field of the
beam into the pipe wall. If the pulse is 'T seconds
in length then the maximum range of t' over
which the integrand is nonzero is 'T. Thus, di
mensionally the equation becomes

~/tR
2 ~ a5/2~ 'T 1/2

where tR is a characteristic growth time. Hence
t

R
,..,..., a -514 'T- 1/4 and the corresponding growth

length IR is 19 ,..,..., vtR ,..,..., va ~514 'T- 1/4. Inserting nu
merical values, we obtain

We will compare this length to the growth length
with continuous focusing in Section IV and show
that focusing substantially increases the growth
length.

In the equation of motion (2), we have d/dt
= a/at + va/az. For the initial conditions a~/az

(O,t) = 0; ~(O,t) = do, the solution is of the form

~(z,t) = u - I(t - z/v) ~ (t - z/v)nI2gn(z), (3)
n=O

where ko == wo/v. The boundary conditions now
become go(O) = do, gn(O) = 0 for n > 0, and
gn'(O) = 0 for all n, where a prime denotes dif
ferentiation with respect to z.

With these boundary conditions, the solutions
of Eqs. (6) and (7) are

where u - I(X) is the unit step function and the
functions gn(Z) must be determined. Substituting
Eq. (3) into Eq. (2) yields

11=0 11=0

(4)
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(b)

(c)

,2.50
, "2.15

, 1.80

. 1.20 T (X 100)
·0.60

I l 1.00
I,
~/0.72

, '0.48
,"0.32 f(X 10°)
0.12

,0
o
Lt)

N

(a)

\

II I

':'\' I

I
i1[2.50

1.95

i : V'1.50
I ~" 0.90 T (X 10- 1)

i [I ,'0.30
8-' gO
N N

Maximum ~/do = 3.12 X 102

Minimum ~/do = -1.35 X 102

Maximum ~/do = 2.02 X 101 '
Minimum ~/do = -3.40 X 101

o 0 0 0 0
Lt) 0 Lt) 0
ci ~ ~ N

~/dO = 0 z

VdO~

~/do = 0 z
(8)

kozjn - I (koz)x--------
f(n +Of (~+ 1)'

~(z,t) = dou - I (t - z/v)

:x; (Y1T(t - z/v) fl 5
/
2z)n

X L 2
n=O 4v ko

x

which may be inverted to yield

x kozjn(koz)

f(n + 2) f (~ + D'
(
V; OS/2 Z)n+ I

gn+ t(Z) = do 4v 2 k
o

where j n is the spherical Bessel function of order
n. Thus, the solution is

(
V; OS/2) n + I

gn+ J (s) = do 2v 2

where the tilde denotes the Laplace transform
and s is the Laplace transform variable.

This recursion relation may be solved to yield
gn + J(s) in terms of go(s). Thus

Using the convolution theorem for Laplace trans
forms, we obtain

If we define the transformed variables

(8a)

FIGURE 2 Normalized beam displacement for continuous
focusing solution Eq. (8c) as a function of i and i for (a) i
= [0 to 25], i = [0 to 0.25], (b) Z = 10 to 25], i = [0 to 1]
and (c) i = [0 to 25], i = [0 to 2.5].

i == koz, (8b)
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the solution (8) can be written as

Xl (~i)n
~(i;T) = dou-I(i) n~o -4-

x zjn - I (Z) . (8c)

f(n + l) r (~ + 1)

by !£ - 1 and where J v is the cylindrical Bessel
function of order v. Use of the relation2

(
2 ) 1/2 00 tm

- cosVz 2 -2zt= L ,Jm - I /2(z),
7TZ m=O m.

gives

~(z,t) = dou - 1(I - zlv) !£ - 1

The value of ~(i,T)ldo determined from Eq. (8c)
is plotted vs i and T in Fig. 2. The displacement
as a function of z and 1 may be found by applying
the inverses of the transformations (8a) and (8b)
to the i and T axes of the plots. In this manner
the solution for many values of the parameters
ko and 0 5/2 may be determined from one series
of plots.

Using the Bromwich integral to invert the La
place transform gives

1
~(z,t) = dou - 1(t - zlv) -4.

7Tl

x [exp { {(koZ)2 - 2~J1/2}

{ [
2 2kozJ I/2} Jds+ exp - i (koz) - V; -;.

If koz ~ A 2/3 ~ 1, the saddle points of the in
tegrand are found to be at s ~ (=+= i)2/3/(2A 2)2/3
where the upper (lower) sign corresponds to the
saddle points of the first (second) term in Eq.
(10) . For each sign one of the saddle points lies
on the branch cut of the integrand and is inac
cessible. The integration path is shown in Fig. 3.
The result of the steepest-descent calculation is

(10)

(11 )[
3 (A)2/3Jx exp 2 2" cos koz

2do (2) 1/3
~(z,t) ~ -- u - 1(t - zlv) -Th A

The solution for positive focusing (8) may be
written as

~(z,/) = dou - 1(t - zlv)

i A nkozjn-1 (koz) (9)

x n=O f(n + 1) r (~ + I)'
where

IV. ASYMPTOTIC SOLUTION FOR
CONTINUOUS FOCUSING

Our aim is to derive an integral representation of
this solution so that an asymptotic formula may
be obtained.

Laplace transforming the sum in the variable
A 2 gives

~1TkoZ I~(z,/) = dou - 1(t - zlv) -2- :£-

{
I Xl ( 1 )n 1 }x - L "r ,In-II2(koz) ,
Sn=O vs n.

where the inverse Laplace transform is denoted

We may now define a characteristic length for
the growth of the instability from the relation

~=~ _ ~n5/2
Zg - 2 - 8kov 2 Z
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Saddle point

gate long high-current pulses over great dis
tances. The most sensitive parameter in the
growth length expression is the pipe radius, while
one of the least is the pipe conductivity. A value
of 1017 sec - 1 corresponds to the (J of aluminum,
which would be difficult to exceed in practical
situations.

Consider a pulsed electric-power transmission
example. 3 For a 5 MeV, 2 kA beam with a pulse
length of 100 nsec, the critical focusing case gives
a growth length of ZI( ::::::: 15 m, while the positive
focusing expression gives ZI( ::::::: 63 (t 00 m/X-o) m,
where (J and b have been taken as 1017 sec-I and
10 cm, respectively. These growth lengths are
disturbingly short even though the latter growth
length can be extended by increased focusing
(decreased X-o).

Imaginary
s

vsaddle point

/f

Saddle pOint"\

~X~-1'~-I" ~1'_~_~ +--_---=R-.:...::e:.=:.a:.....:1s:--

V. FORMULATION OF THE PROBLEM
FOR DISCRETE FOCUSING

FIGURE 3 Contour for Eq. (10).

Consider the single transport cell shown in Fig.
4 consisting of two half-lenses each 'of focal
length 2f and a drift length L. The transport ma
trix for each half lens is

(13 )

in the sense that if a prime and a double prime

o

1
2f

"Lens"° Lens"
I
I
I

8kov2

ZI( = ~n5/2·

(12)

4 0
( )

1/2
. "I (J

ZI(= 1/2 17 -I
I<kA) T< .....sec) 10 (sec )

Inserting numerical values, we have

or

(
b<Cffi») 3 (1OO(m»)x -10 --- meters,

~o

where ~o = 27T/ko, the net coherent betatron
wavelength due to the external continuous fo
cusing. This expression should be compared with
that in Section II for the critical focusing case.
The growth length with focusing grows more rap
idly with pipe radius, conductivity and "I, but less
rapidly with increasing beam current than the
growth length in the absence of focusing. In ad
dition, the growth length for the focusing case
varies inversely with the coherent betatron wave
length. The inverse dependence of ZI( with beam
current and the square root of the pulse length
illustrates the difficulty of attempting to propa-

---------HaIf
lens

I I
I I
I I
I I

~;.•..------- La ----------.~:

Drift length

xL
z

FIGURE 4 A single half-lens drift length half-lens combi
nation.
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denote quantities immediately before and after
passing through the half-lens respectively, then

We can thus write the unit-cell transport matrix
M,MdM, as

(14)

sinh aL
cosh o.L - 20.f

cosh aL sinh aL
a sinh aL - +

f 40.f2

In the drift-length region, the beam displace
ment varies according to the equation of motion

where we have assumed that ~ ~ I. If we change
variables, from z, t to z, ,. = t - z/v, Eq. (15)
can be written as

m
12

]
-mil ·

d 2t Jf at-~ = OS/2 ~~dt'
dt 2 -xat' '

a2~ OS
/
2 JT a~ "

-=- -~dt.
az2

V
2

- x a,.'

(15)

(16)

sinh o.L

a
sinh aL

cosh 13L - 20.f

This unimodular matrix can be written as4

M,MdM, = cos IL U~]
+ sin fJ- [mil

m21

In the problem under consideration we choose
a~(O)/az = 0; therefore ~(N) = ~(O) cos N~ or

and mil = O. After traversing N-cells,
~ (N) ~ (0)

= (M,MdM,)N

Here

sinh aL 1
cos IL = cosh o.L - 20.f = 2Tr(M,MdM,)

Now

(M,MdM,)N = cos NIL r~ ~]

+ sin NfJ- r 0
m21

m
12

]o .

a~

Bz
a~

az

- - 1 B~«»
~(z) = ~(O) cosh az + - -- sinh az,

a Bz

a~ - B~(O)
- (z) = a~(O) sinh az + -- cosh az.
az Bz

Laplace transforming in ,. gives

a2~ \l;OS12_
- - ~ = 0 (17)
az 2 2V2~

with solution ~ = D cosh az + E sinh az and
a~/az = Da sinh az + Ea cosh az, where we
have defined

a == 1T 1/40S/4/[V2I J(s) 1/4].

Now at z = 0, ~ = ~«) = D and a~/az = Ea.
Therefore

Then the drift-length transfer matrix is

(
h L sinh aL)

M - cos a
d - a,

a sinh aL cosh aL

- ~(O) { r
~(N) = 2 exp iN COS-I

( h L sinh aL)]
x cos a - 2af

such that after traversing one complete cell,

~ ~

a~ M,M"M, d~

dZ dZ

+ exp r-iN cos - I

(
sinh aL)]}x cosh o.L - . 20.f ·
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Now i cos - I X = log [x ± w-=t], so that

do !C+iX ds
~(N) = -. - exp (TS)

41Tt C -ix S
x sin

21T 3V3
----
3 2

x {exp[N log (x ± w-=t)]

+ exp[ - N log(x ± w-=t)]},

where

sinh aL
x == cosh aL - 2af· ·

( )

2/3

NUV;;05/2 1 - ~
x

For large N the saddle points of the integrand
occur at

where we have put ~(o) = do, the initial displace
ment of the beam.

2/3

VI. RELATION OF THE DISCRETE
FOCUSING SOLUTION TO THE
CONTINUOUS FOCUSING SOLUTION

\(0)

a:)\
az

o

o

1
----

2ioN

o

I
---

2ioN

x

Consider the cell shown in Fig. 4. Let the number
of lenses increase such that the interlens distance
L = LoiN, while at the same time extending the
focal length so that i = foN. Then the displace
ment at the Nth cell is given by

1/3

where h = as 1/4 = 1T 1/40 5/4/(v2v) and the upper
(lower) sign corresponds to the saddle points for
the first (second) term. For each term one of the
saddle points lies on a branch cut and cannot be
traversed. The integration contour is basically
the same as that for Eq. (10) and is shown in Fig.
3. A steepest-descent evaluation of the integral
yields

L o
- 2foN 2

L o 1
4io2N 2 ioN

Lo
N

Lo
- 2foN 2

x cos N tan -]
L

2i

where we have chosen the beam to have an initial
displacement but no initial slope; i.e., a~/ax.= 0
at z = O. As in Section V, this may be written
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as

where

(N)

In particular for z = L o, comparison of Eq. (19)
with Eq. (20) gives

1
k~ = --. (21)

YLofo

If we now put L = LoiN, f = foN in Eq. (18)
and let N ~ 00, we obtain the continuous focusing
asymptotic solution (11), as we should.

_ -I ( LO)
J.1 - cos 1 - 2foN2 •

Thus

As N ~ 00 this equation becomes

~(Nl = ~(o) cos (N ~f~~2) = ~(O) cos ~.

(19)

Now in the continuous focusing limit we have

Using the variables z, T = t - ziti this becomes

a2~
-2 + k~2~ = O.
az

For the initial conditions ~«» =1= 0; a~(O)/az 0
this gives

~(z) = ~«» cos k~z. (20)

VII. CONCLUSION

In summary, an exact solution for the growth of
the transverse displacement of a beam traveling
in an evacuated pipe of finite conductivity with
continuous focusing has been presented. In ad
dition, asymptotic growth rates for both contin
uous and discrete element focusing were ob
tained. The instability was shown to be significant
-for the parameters of interest for pulsed electric
power transmission.

For both continuous and discrete element fo
cusing, the instability grows. Focusing can only
act to slow the growth: it cannot suppress the
instability.

The authors wish to thank R. Melendez for
performing the numerical work and E. P. Lee for
helpful discussions.
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