106 research outputs found

    Jet Lag From A Physics Point Of View

    Get PDF
    While the common believe is that dark/light timing causes jet lag, we argue that physics, not the biological clock, may be the main reason for this air travel disorder. We explored the change in voltage in the human brain due to the added voltage induced by flying over the magnetic field of the Earth, and we think that this induced voltage in the brain is significant enough to cause neurological changes that may trigger jet lag or other illnesses

    ВЛИЯНИЕ ЭКРАНОВ НА РАСПРЕДЕЛЕНИЯ ИМПУЛЬСНЫХ МАГНИТНЫХ ПОЛЕЙ ПРИ ТРАНСКРАНИАЛЬНОЙ МАГНИТНОЙ СТИМУЛЯЦИИ

    Get PDF
    The article is devoted to an experimental test on the distribution of the pulse magnetic field’s range and how various screens influence it.Проведено экспериментальное исследование распределения амплитуды импульсного магнитного поля и влияние на него различных экранов

    ИНТЕРАКТИВНАЯ ТРЕХМЕРНАЯ ВИЗУАЛИЗАЦИЯ ПАТОЛОГИЧЕСКОЙ АКТИВНОСТИ ГОЛОВНОГО МОЗГА

    Get PDF
    The article examines patterns of abnormal brain activity of human type «spike» and type «sharp wave». The program automatically detect the type of «Spike» and patterns such as «sharp wave»based on wavelet transform and mathematical package MATLAB. It creates an interactive three-dimensional visualization of the pathological activity of the «spike» of the human brain and the type of «sharp wave».Разработана программа автоматического детектирования паттернов типа «спайк» и типа «острая волна» на основе вейвлет-преобразования и математического пакета MATLAB. Создана интерактивная трехмерная визуализация патологической активности головного мозга человека с использованием языка программирования C# в среде Visual Studio 2015, на основе автоматически детектированных патологических паттернов типа «спайк» и типа «острая волна»

    Corticospinal Integration in Healthy Humans

    Full text link
    Synchronized arrival of neuronal signals from the periphery and motor cortex has been associated with neuronal plasticity and motor learning. The main objective of this study was to examine neuronal interactions following excitation of descending motor axons from the primary motor cortex (M1) and spinal neuronal circuits via transcranial magnetic stimulation (TMS) and transcutaneous electric stimulation of the spine (tsESS) in 15 healthy humans while seated semiprone. TMS was delivered below or above the resting motor evoked potential (MEP) threshold, for the tibialis anterior (TA) muscle, while tsESS was delivered at the lowest stimulation intensity that evoked responses in most or all leg muscles. TMS was delivered either alone or with tsESS at different interstimulus intervals ranging from negative 50 ms to positive 50 ms. tsESS induced a biphasic excitability pattern of MEPs recorded from the distal ankle muscles of the right leg with negative interstimulus intervals showing depression of MEPs followed by a non significant effect at the interstimulus interval of 0 ms, and potentiation of MEPs at positive interstimulus intervals. These findings suggest that 1) cortical descending motor volleys can either be potentiated or depressed based on the time that cortical and spinal signals meet at the spinal cord level, and 2) MEPs and tsESS-induced compound action muscle potentials likely share common neuronal pathways. These findings constitute the first evidence that synchronized neuronal signals from the primary motor cortex and spine can potentiate corticospinal motor output

    Brain Computer Interfaces, a Review

    Get PDF
    The brain is in many respects the centre of our being, controlling our actions, movements, thoughts and emotions. It is somewhat of a mystery, presenting itself only through the body's exterior façade. It is safeguarded by a thick skull that insulates it from the outside world. Information from the surroundings is relayed to it via the five senses - touch, sight, sound, smell and taste. Its role was underestimated in the past by cardiocentrists who believed that thought, sensation and behaviour originated in the heart and that the brain was there to "make the heat and boiling in the heart well blent and tempered"-Aristotle(384-322BC). Today we can pinpoint the areas of activity in the brain, and localise its functions. We now have an understanding of the physiological processes and signals that occur. We know that neurons in the brain's cortex transmit signals to an efferent nervous system, i.e. from the brain towards motor output pathways, and also from an afferent system, i.e. from the sense organs to the brain. The impulses are both electrical and chemical signals, which can be detected and measured as with any system using specific techniques. As with any system if there are problems we want to solve them, if there are improvements to be made we implement them where possible. Problems can occur in the afferent system, and also in the efferent system, for example causing visual or auditory impediments in the first case and paralysis in the latter. By effectively "bypassing" the nervous system the brain can be connected in a more direct sense to its environment. Brain computer interfaces offer this possibility. Their origins lie in providing alternative communication methods for the disabled, but now offer the possibility of providing people with "different senses". These augmentative channels will allow the brain to directly connect to its environment. Electrical signals originating from the brain can be directly sent to computers, providing it with an additional control output. This can even be connected to the Internet to provide an "extended nervous system" for controlling a robot hundreds of miles away. Conversely new and different senses such as ultrasound or infrared detection could be relayed as sensory information to the brain. In the exciting information age we live in today, integrating technology with our biological systems seems like a natural progression, and obtaining a "silicon nervous system" may by the only way to keep up! The Driving Forc

    СОСТОЯНИЕ ЦЕНТРАЛЬНЫХ МОТОРНЫХ ПУТЕЙ ПРИ РАССЕЯННОМ СКЛЕРОЗЕ У ДЕТЕЙ

    Get PDF
    Aim: to evaluate motor pathways involvement in children with multiple sclerosis. Patients and methods: we used transcranial magnetic stimulation method. 9 children with relapsing-remitting multiple sclerosis (mean duration 1,68 years) and 20 controls were enrolled. Results: in most of the cases findings in multiple sclerosis group were abnormal. More often polyphasic changes of the motor evoked potentials (MEP) shape (78% of the cases) and elevation of MEP threshold (88%) were seen. Conclusions: transcranial magnetic stimulation demonstrated high sensitivity in children with multiple sclerosis. Main neurophysiologic findings in multiple sclerosis in children may reflect altering membrane excitability of motor neurons and demyelinating lesions. Axonal damage in children with multiple sclerosis are less apparent. Цель: исследование состояния центральных моторных путей у детей с рассеянным склерозом (РС). Материалы и методы. Обследовано 29 пациентов, из них 20 неврологически здоровых (средний возраст 14 лет) составили группу контроля и 9 (средний возраст 13 лет, ремиттирующая форма РС, средняя продолжительность заболевания 1,68 лет) вошли в группу рассеянного склероза. Всем детям проводили магнитно-резонансную томографию, неврологический осмотр и транскраниальную магнитную стимуляцию. Регистрировали порог, латентность, амплитуду и форму вызванного моторного ответа, рассчитывали время центрального моторного проведения. Результаты: Установлено, что время центрального моторного проведения, амплитуды и латентности вызванного моторного ответа у пациентов с рассеянным склерозом достоверно не отличались от группы контроля. В 88% случаев в группе рассеянного склероза был повышен порог и в 78% — изменена форма вызванного моторного ответа. Выводы: Полученные результаты указывают на преобладающее снижение функциональной активности мотонейронов коры у детей с рассеянным склерозом. Поражение моторных путей у данной группы пациентов преимущественно имеет демиелинизирующий характер, аксональные нарушения наблюдаются значительно реже.

    Neurofisiologia e plasticidade no córtex cerebral pela estimulação magnética transcraniana repetitiva

    Get PDF
    Um velho dogma da biologia afirma que só existiria capacidade de reorganização cortical (neuroplasticidade) em animais muito jovens; no adulto, tal capacidade seria pequena ou mesmo inexistente. Aqui, revisamos estudos realizados em animais e em humanos que demonstram uma capacidade de reorganização cortical nos sistemas sensoriais e motores em indivíduos adultos. Destacamos os estudos realizados com a técnica de estimulação magnética transcraniana. O córtex cerebral asulto é capaz de reorganização após lesões do sistema nervoso periférico ou central ou no contexto do aprendizado.An old biological dogma states that a potencial for cortical reorganization (neuroplasticity) exists nly in young animals, being lost in adlt life. Here we review studies carried out both in animals and humans, whixh demonstrate cortical reorganization in sensory and motor systems in adult subjects. We particulary emphasiza human studies carried out with the aid of transcranial magnetic stimulation. The adult cortex is capable of reorganization after peripheral or central nervous system lesions and as a result of learning
    corecore