192 research outputs found

    CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney

    Get PDF
    Dendritic cells (DCs) interface innate and adaptive immunity in nonlymphoid organs; however, the exact distribution and types of DC within the kidney are not known. We utilized CX3CR1GFP/+ mice to characterize the anatomy and phenotype of tissue-resident CX3CR1+ DCs within normal kidney. Laser-scanning confocal microscopy revealed an extensive, contiguous network of stellate-shaped CX3CR1+ DCs throughout the interstitial and mesangial spaces of the entire kidney. Intravital microscopy of the superficial cortex showed stationary interstitial CX3CR1+ DCs that continually probe the surrounding tissue environment through dendrite extensions. Flow cytometry of renal CX3CR1+ DCs showed significant coexpression of CD11c and F4/80, high major histocompatibility complex class II and FcR expression, and immature costimulatory but competent phagocytic ability indicative of tissue-resident, immature DCs ready to respond to environment cues. Thus, within the renal parenchyma, there exists little immunological privilege from the surveillance provided by renal CX3CR1+ DCs, a major constituent of the heterogeneous mononuclear phagocyte system populating normal kidney

    Effect of axillary brachial plexus blockade on baroreflex-induced skin vasomotor responses: Assessing the effectiveness of sympathetic blockade

    Get PDF
    Background: The combination of laser Doppler flowmetry and non-invasive blood pressure monitoring allows the continuous observation of cutaneous vascular resistance (CVR). Continuous recording of unmodulated skin blood flow (SBF) is very sensitive to artefacts, rendering the method unreliable. In contrast, intermittent short lasting challenges of the CVR by cardiovascular autonomic reflexes may provide information about the responsiveness of the sympathetic nervous system in the skin. Methods: Eleven patients with below-wrist hand surgery (six males and five females; aged 35.2 ± 7.1 years) performed Valsalva maneuver following axillary blockade. Skin blood flow was continuously monitored on the forearm of the side axillary blockade, as well as on the contra-lateral forearm, which was used as the control. The responses were expressed as changes compared with the baseline level derived from a resting period of 30s. The maxima

    Pathophysiology of focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is a major cause of idiopathic steroid-resistant nephrotic syndrome (SRNS) and end-stage kidney disease (ESKD). In recent years, animal models and studies of familial forms of nephrotic syndrome helped elucidate some mechanisms of podocyte injury and disease progression in FSGS. This article reviews some of the experimental and clinical data on the pathophysiology of FSGS

    Pioglitazone Enhances the Beneficial Effects of Glucocorticoids in Experimental Nephrotic Syndrome

    Get PDF
    Glucocorticoids are the primary therapy for nephrotic syndrome (NS), but have serious side effects and are ineffective in ~20-50% of patients. Thiazolidinediones have recently been suggested to be renoprotective, and to modulate podocyte glucocorticoid-mediated nuclear receptor signaling. We hypothesized that thiazolidinediones could enhance glucocorticoid efficacy in NS. We found that puromycin aminonucleoside-induced proteinuria in rats was significantly reduced by both high-dose glucocorticoids (79%) and pioglitazone (61%), but not low-dose glucocorticoids (25%). Remarkably, pioglitazone + low-dose glucocorticoids also reduced proteinuria (63%) comparably to high-dose glucocorticoids, whereas pioglitazone + high-dose glucocorticoids reduced proteinuria to almost control levels (97%). Molecular analysis revealed that both glucocorticoids and pioglitazone enhanced glomerular synaptopodin and nephrin expression, and reduced COX-2 expression, after injury. Furthermore, the glomerular phosphorylation of glucocorticoid receptor and Akt, but not PPARγ, correlated with treatment-induced reductions in proteinuria. Notably, clinical translation of these findings to a child with refractory NS by the addition of pioglitazone to the treatment correlated with marked reductions in both proteinuria (80%) and overall immunosuppression (64%). These findings together suggest that repurposing pioglitazone could potentially enhance the proteinuria-reducing effects of glucocorticoids during NS treatment

    Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease

    Get PDF
    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN

    Primary cilia disappear in rat podocytes during glomerular development

    Get PDF
    Most tubular epithelial cell types express primary cilia, and mutations of primary-cilium-associated proteins are well known to cause several kinds of cystic renal disease. However, until now, it has been unclear whether mammalian podocytes express primary cilia in vivo. In this study, we determined whether primary cilia are present in the podocytes of rat immature and mature glomeruli by means of transmission electron microscopy of serial ultrathin sections. In immature glomeruli of fetal rats, podocytes express the primary cilia with high percentages at the S-shaped body (88 ± 5%, n = 3), capillary loop (95 ± 4%, n =  4), and maturing glomerulus (76 ± 13%, n = 5) stages. The percentage of ciliated podocytes was significantly lower at the maturing glomerulus stage than at the former two stages. In mature glomeruli of adult rats, ciliated podocytes were not found at all (0 ± 0%, n = 11). These findings indicate that the primary cilia gradually disappear in rat podocytes during glomerular development. Since glomerular filtration rate increases during development, the primary cilia on the podocytes are subjected to a stronger bending force. Thus, the disappearance of the primary cilia presumably prevents the entry of excessive calcium-ions via the cilium-associated polycystin complexes and the disturbance of intracellular signaling cascades in mature podocytes

    Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease

    Get PDF
    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment

    Clinical trials treating focal segmental glomerulosclerosis should measure patient quality of life

    Get PDF
    Optimal therapy of patients with steroid-resistant primary focal segmental glomerulosclerosis (FSGS) remains controversial. This report describes the initial study design, baseline characteristics, and quality of life of patients enrolled in the FSGS Clinical Trial, a large multicenter randomized study of this glomerulopathy comparing a 12-month regimen of cyclosporine to the combination of mycophenolate mofetil and oral dexamethasone. Patients with age ranging 2–40 years, with an estimated glomerular filtration rate >40 ml/min per 1.73 m2, a first morning urine protein-to-creatinine ratio over one, and resistant to corticosteroids were eligible. The primary outcome was complete or partial remission of proteinuria over 52 weeks after randomization. In all, 192 patients were screened, of whom 138 were randomized for treatment. Ethnic distributions were 53 black, 78 white, and 7 other. By self- or parent-proxy reporting, 26 of the 138 patients were identified as Hispanic. The baseline glomerular filtration rate was 112.4 (76.5, 180.0) ml/min per 1.73 m2, and urine protein was 4.0 (2.1, 5.3) g/g. Overall, the quality of life of the patients with FSGS was lower than healthy controls and similar to that of patients with end-stage renal disease. Thus, the impact of FSGS on quality of life is significant and this measurement should be included in all trials

    The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat

    Get PDF
    PURPOSE: Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene. Migalastat, a pharmacological chaperone, binds to specific mutant forms of α-galactosidase A to restore lysosomal activity. METHODS: A pharmacogenetic assay was used to identify the α-galactosidase A mutant forms amenable to migalastat. Six hundred Fabry disease-causing mutations were expressed in HEK-293 (HEK) cells; increases in α-galactosidase A activity were measured by a good laboratory practice (GLP)-validated assay (GLP HEK/Migalastat Amenability Assay). The predictive value of the assay was assessed based on pharmacodynamic responses to migalastat in phase II and III clinical studies. RESULTS: Comparison of the GLP HEK assay results in in vivo white blood cell α-galactosidase A responses to migalastat in male patients showed high sensitivity, specificity, and positive and negative predictive values (≥0.875). GLP HEK assay results were also predictive of decreases in kidney globotriaosylceramide in males and plasma globotriaosylsphingosine in males and females. The clinical study subset of amenable mutations (n = 51) was representative of all 268 amenable mutations identified by the GLP HEK assay. CONCLUSION: The GLP HEK assay is a clinically validated method of identifying male and female Fabry patients for treatment with migalastat

    Invariant Natural Killer T Cell Agonist Modulates Experimental Focal and Segmental Glomerulosclerosis

    Get PDF
    A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis (FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T (iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin(ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1α, IL-1β, IL-17, TNF-α, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-β analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-β could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-β, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-β through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management
    corecore