309 research outputs found
Modeling time delay in the NFκB signaling pathway following low dose IL-1 stimulation
Stimulation of human epithelial cells with IL-1 (10 ng/ml) + UVB radiation results in sustained NFκB activation caused by continuous IKKβ phosphorylation. We have recently published a strictly reduced ordinary differential equation model elucidating the involved mechanisms. Here, we compare model extensions for low IL-1 doses (0.5 ng/ml), where delayed IKKβ phosphorylation is observed. The extended model including a positive regulatory element, most likely auto-ubiquitination of TRAF6, reproduces the observed experimental data most convincingly. The extension is shown to be consistent with the original model and contains very sensitive processes which may serve as potential intervention targets
Doping-Dependent Raman Resonance in the Model High-Temperature Superconductor HgBa2CuO4+d
We study the model high-temperature superconductor HgBa2CuO4+d with
electronic Raman scattering and optical ellipsometry over a wide doping range.
The resonant Raman condition which enhances the scattering cross section of
"two-magnon" excitations is found to change strongly with doping, and it
corresponds to a rearrangement of inter-band optical transitions in the 1-3 eV
range seen by ellipsometry. This unexpected change of the resonance condition
allows us to reconcile the apparent discrepancy between Raman and x-ray
detection of magnetic fluctuations in superconducting cuprates. Intriguingly,
the strongest variation occurs across the doping level where the antinodal
superconducting gap reaches its maximum.Comment: 4 pages, 4 figures, contact authors for Supplemental Materia
Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors
The magnetic structure of antiferromagnetically ordered phases of
quasi-one-dimensional organic conductors is studied theoretically at absolute
zero based on the mean field approximation to the quarter-filled band with
on-site and nearest-neighbor Coulomb interaction. The differences in magnetic
properties between the antiferromagnetic phase of (TMTTF)X and the spin
density wave phase in (TMTSF)X are seen to be due to a varying degrees of
roles played by the on-site Coulomb interaction. The nearest-neighbor Coulomb
interaction introduces charge disproportionation, which has the same spatial
periodicity as the Wigner crystal, accompanied by a modified antiferromagnetic
phase. This is in accordance with the results of experiments on (TMTTF)Br
and (TMTTF)SCN. Moreover, the antiferromagnetic phase of (DI-DCNQI)Ag
is predicted to have a similar antiferromagnetic spin structure.Comment: 8 pages, LaTeX, 4 figures, uses jpsj.sty, to be published in J. Phys.
Soc. Jpn. 66 No. 5 (1997
Mixed-phase titania foams via 3D-printing for pharmaceutical degradation
The continuing accumulation of organic micropollutants, particularly pharmaceuticals, in water is now considered an urgent threat to human health and the environment. Although the photocatalytic degradation of these compounds using slurries of photoactive nanoparticles has been proven to be highly effective at laboratory scale, this technology has not been implemented in industry due to cost and safety concerns. Here, 3D printed titania foams which are nanoparticle-free, mechanically robust and photoactive, are presented for the first time as a viable alternative to slurries for the photocatalytic degradation of pharmaceuticals. By optimizing the resin used to 3D print highly porous gyroid structures and the subsequent sintering conditions, it was possible to obtain a pure titania foam with a high anatase content, leading to the high photoactivity observed. Using carbamazepine, the pharmaceutical most found in waterways around the world, as a model pollutant, the 3D printed foams were tested in a recirculating flow reactor, with a quantum yield and electrical energy per order of 7.6 × 10−3 and 67.6 kW h m−3, respectively, outperforming literature results for titania nanoparticle slurries. These results, along with the reproducibility afforded by 3D printing methods, shows a clear pathway for photocatalysts to be implemented in practice, helping to solve an urgent health problem while addressing the risk of nanoparticulate release in the environment
Optical and thermodynamic properties of the high-temperature superconductor HgBa_2CuO_4+delta
In- and out-of-plane optical spectra and specific heat measurements for the
single layer cuprate superconductor Hg-1201 at optimal doping (Tc = 97 K) are
presented. Both the in-plane and out-of-plane superfluid density agree well
with a recently proposed scaling relation rho_{s}=sigma_{dc}T_{c}. It is shown
that there is a superconductivity induced increase of the in-plane low
frequency spectral weight which follows the trend found in underdoped and
optimally doped Bi-2212 and optimally doped Bi-2223. We observe an increase of
optical spectral weight which corresponds to a change in kinetic energy of
approximately 0.5 meV/Cu which is more than enough to explain the condensation
energy. The specific heat anomaly is 10 times smaller than in YBCO and 3 times
smaller than in Bi-2212. The shape of the anomaly is similar to the one
observed in YBCO showing that the superconducting transition is governed by
thermal fluctuations.Comment: 11 pages, 13 figure
The Phonon Drag Effect in Single-Walled Carbon Nanotubes
A variational solution of the coupled electron-phonon Boltzmann equations is
used to calculate the phonon drag contribution to the thermopower in a 1-D
system. A simple formula is derived for the temperature dependence of the
phonon drag in metallic, single-walled carbon nanotubes. Scattering between
different electronic bands yields nonzero values for the phonon drag as the
Fermi level varies.Comment: 8 pages, 4 figure
Polaronic metal state at the LaAlO3/SrTiO3 interface
Interplay of spin, charge, orbital and lattice degrees of freedom in oxide
heterostructures results in a plethora of fascinating properties, which can be
exploited in new generations of electronic devices with enhanced
functionalities. The paradigm example is the interface between the two band
insulators LaAlO3 and SrTiO3 (LAO/STO) that hosts two-dimensional electron
system (2DES). Apart from the mobile charge carriers, this system exhibits a
range of intriguing properties such as field effect, superconductivity and
ferromagnetism, whose fundamental origins are still debated. Here, we use
soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the
LAO overlayer and access charge carriers at the buried interface. The
experimental spectral function directly identifies the interface charge
carriers as large polarons, emerging from coupling of charge and lattice
degrees of freedom, and involving two phonons of different energy and thermal
activity. This phenomenon fundamentally limits the carrier mobility and
explains its puzzling drop at high temperatures
Charge gap in the one--dimensional dimerized Hubbard model at quarter-filling
We propose a quantitative estimate of the charge gap that opens in the
one-dimensional dimerized Hubbard model at quarter-filling due to dimerization,
which makes the system effectively half--filled, and to repulsion, which
induces umklapp scattering processes. Our estimate is expected to be valid for
any value of the repulsion and of the parameter describing the dimerization. It
is based on analytical results obtained in various limits (weak coupling,
strong coupling, large dimerization) and on numerical results obtained by exact
diagonalization of small clusters. We consider two models of dimerization:
alternating hopping integrals and alternating on--site energies. The former
should be appropriate for the Bechgaard salts, the latter for compounds where
the stacks are made of alternating and molecules. % and ( denotes , , ...).Comment: 33 pages, RevTeX 3.0, figures on reques
Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation.
Lysosomes are membrane-surrounded cytoplasmic organelles filled with a powerful cocktail of hydrolases. Besides degrading cellular constituents inside the lysosomal lumen, lysosomal hydrolases promote tissue remodeling when delivered to the extracellular space and cell death when released to the cytosol. Here, we show that spatially and temporally controlled lysosomal leakage contributes to the accurate chromosome segregation in normal mammalian cell division. One or more chromatin-proximal lysosomes leak in the majority of prometaphases, after which active cathepsin B (CTSB) localizes to the metaphase chromatin and cleaves a small subset of histone H3. Stabilization of lysosomal membranes or inhibition of CTSB activity during mitotic entry results in a significant increase in telomere-related chromosome segregation defects, whereas cells and tissues lacking CTSB and cells expressing CTSB-resistant histone H3 accumulate micronuclei and other nuclear defects. These data suggest that lysosomal leakage and chromatin-associated CTSB contribute to proper chromosome segregation and maintenance of genomic integrity
- …