815 research outputs found

    Measuring inequalities in the distribution of health workers by bi-plot approach: The case of Turkey

    Get PDF
    Optimal planning of the health workers is of vital importance for a country. Distribution of health workers among provinces in emerging markets is an important development criterion. In this study, biplot graphical approach is used to determine the distribution of health workers. The results of biplot analysis point out that the distribution of the healthcare staff in Turkey is unbalanced. The number of health workers should be planned and considered according to the desire, need, population, target and workload criteria. The new employment opportunities should be created and the workers should be encouraged to serve in low income regions by providing better conditions

    Signal-to-noise ratio of Gaussian-state ghost imaging

    Full text link
    The signal-to-noise ratios (SNRs) of three Gaussian-state ghost imaging configurations--distinguished by the nature of their light sources--are derived. Two use classical-state light, specifically a joint signal-reference field state that has either the maximum phase-insensitive or the maximum phase-sensitive cross correlation consistent with having a proper PP representation. The third uses nonclassical light, in particular an entangled signal-reference field state with the maximum phase-sensitive cross correlation permitted by quantum mechanics. Analytic SNR expressions are developed for the near-field and far-field regimes, within which simple asymptotic approximations are presented for low-brightness and high-brightness sources. A high-brightness thermal-state (classical phase-insensitive state) source will typically achieve a higher SNR than a biphoton-state (low-brightness, low-flux limit of the entangled-state) source, when all other system parameters are equal for the two systems. With high efficiency photon-number resolving detectors, a low-brightness, high-flux entangled-state source may achieve a higher SNR than that obtained with a high-brightness thermal-state source.Comment: 12 pages, 4 figures. This version incorporates additional references and a new analysis of the nonclassical case that, for the first time, includes the complete transition to the classical signal-to-noise ratio asymptote at high source brightnes

    Aplikasi Fotogrammetri Rentang Dekat Untuk Pemodelan 3d Gedung a Lawang Sewu

    Full text link
    [Close Range Photogrammetry Application for 3D Modelling of Lawang Sewu Building A] Close range photogrammetry is a one of photogrammetry applications. It can be used for the object measurement that is less than 100 meters. It also usualy used in 3D modeling of buildings, vehicles or bridges etc. In this final task, close range photogrammetry method was used for 3D modeling of Lawang Sewu Building A using non-metric digital camera. Initially, the camera must through of calibration process to determine the camera internal parameters. The process of calibration and data processing in this final task are using PhotoModeler Scanner v.7 2013 software. Phase of buildings modeling contain of marking and referencing, calculating and 3D modeling, transformation of 3D coordinate and visualization of 3D models. The data used are the photos that taken all around Lawang Sewu building A. The final results in this research are 3D model of Lawang Sewu Building A. Testing of the results in 3D modelling processing were done by comparing the 3D model distance referenced to Electronic Total Station measurement and statistics test with level of trust 95%. The statistics test in this research shows that there are no significant difference between ETS measurement

    UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches

    Get PDF
    Motivation: UniRef databases provide full-scale clustering of UniProtKB sequences and are utilized for a broad range of applications, particularly similarity-based functional annotation. Non-redundancy and intra-cluster homogeneity in UniRef were recently improved by adding a sequence length overlap threshold. Our hypothesis is that these improvements would enhance the speed and sensitivity of similarity searches and improve the consistency of annotation within clusters. Results: Intra-cluster molecular function consistency was examined by analysis of Gene Ontology terms. Results show that UniRef clusters bring together proteins of identical molecular function in more than 97% of the clusters, implying that clusters are useful for annotation and can also be used to detect annotation inconsistencies. To examine coverage in similarity results, BLASTP searches against UniRef50 followed by expansion of the hit lists with cluster members demonstrated advantages compared with searches against UniProtKB sequences; the searches are concise (∼7 times shorter hit list before expansion), faster (∼6 times) and more sensitive in detection of remote similarities (>96% recall at e-value <0.0001). Our results support the use of UniRef clusters as a comprehensive and scalable alternative to native sequence databases for similarity searches and reinforces its reliability for use in functional annotation. Availability and implementation: Web access and file download from UniProt website at http://www.uniprot.org/uniref and ftp://ftp.uniprot.org/pub/databases/uniprot/uniref. BLAST searches against UniRef are available at http://www.uniprot.org/blast/ Contact: [email protected]

    Identification of two Amino Acids in the C-terminal Domain of Mouse CRY2 Essential for PER2 Interaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cryptochromes (CRYs) are a class of flavoprotein blue-light signaling receptors found in plants and animals, and they control plant development and the entrainment of circadian rhythms. They also act as integral parts of the central circadian oscillator in humans and other animals. In mammals, the CLOCK-BMAL1 heterodimer activates transcription of the <it>Per </it>and <it>Cry </it>genes as well as clock-regulated genes. The PER2 proteins interact with CRY and CKIε, and the resulting ternary complexes translocate into the nucleus, where they negatively regulate the transcription of <it>Per </it>and <it>Cry </it>core clock genes and other clock-regulated output genes. Recent studies have indicated that the extended C-termini of the mammalian CRYs, as compared to photolyase proteins, interact with PER proteins.</p> <p>Results</p> <p>We identified a region on mCRY2 (between residues 493 and 512) responsible for direct physical interaction with mPER2 by mammalian two-hybrid and co-immunoprecipitation assays. Moreover, using oligonucleotide-based degenerate PCR, we discovered that mutation of Arg-501 and Lys-503 of mCRY2 within this C-terminal region totally abolishes interaction with PER2.</p> <p>Conclusions</p> <p>Our results identify mCRY2 amino acid residues that interact with the mPER2 binding region and suggest the potential for rational drug design to inhibit CRYs for specific therapeutic approaches.</p

    An Efficient Object-Oriented Exploration Algorithm for Unmanned Aerial Vehicles

    Get PDF
    Autonomous exploration of unknown environments usually focuses on maximizing the volumetric exploration of the surroundings. Object-oriented exploration, on the other hand, tries to minimize the time spent on the localization of some given objects of interest. While the former problem equally considers map growths in any free direction, the latter fosters exploration towards objects of interest partially seen and not yet accurately identified. The proposed work relates to a novel algorithm that focuses on an object-oriented exploration of unknown environments for aerial robots, able to generate volumetric representations of surroundings, semantically enhanced by labels for each object of interest. As a case study, this method is applied both in a simulated environment and in real-life experiments on a small aerial platform

    Vortex Shedding from a Ground Tracking Radar Antenna and its 3D Tip Flow Characteristics

    Get PDF
    Abstract: High-speed ground tracking radar systems rotating at about 60 rpm are currently being implemented as modern air traffic control systems in airports. The flow induced vibration and noise generation of the newly developed radar antennas are the two serious problems that jeopardize the successful deployment of the new ground aircraft tracking systems. This paper deals with the viscous flow details of the highly three-dimensional antenna tip section and the vortex shedding characteristics at Re=426,000. The current analysis uses a 3D computational approach for the computation of viscous flow details with the highly 3 D tip geometry. A 2D unsteady computation of the vortex shedding phenomena is also presented. This paper is a continuation of the computational study dealing with the determination of aerodynamic drag coefficients on ASDE-X (Advanced Surface Detection Equipment) antenna cross sections previously presented in Gumusel et al. [1]

    The Mitochondrion: A Promising Target for Kidney Disease

    Get PDF
    Acute kidney injury; Chronic kidney disease; Mitochondrial dysfunctionLesión renal aguda; Enfermedad renal crónica; Disfunción mitocondrialLesió renal aguda; Malaltia renal crònica; Disfunció mitocondrialMitochondrial dysfunction is important in the pathogenesis of various kidney diseases and the mitochondria potentially serve as therapeutic targets necessitating further investigation. Alterations in mitochondrial biogenesis, imbalance between fusion and fission processes leading to mitochondrial fragmentation, oxidative stress, release of cytochrome c and mitochondrial DNA resulting in apoptosis, mitophagy, and defects in energy metabolism are the key pathophysiological mechanisms underlying the role of mitochondrial dysfunction in kidney diseases. Currently, various strategies target the mitochondria to improve kidney function and kidney treatment. The agents used in these strategies can be classified as biogenesis activators, fission inhibitors, antioxidants, mPTP inhibitors, and agents which enhance mitophagy and cardiolipin-protective drugs. Several glucose-lowering drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1-RA) and sodium glucose co-transporter-2 (SGLT-2) inhibitors are also known to have influences on these mechanisms. In this review, we delineate the role of mitochondrial dysfunction in kidney disease, the current mitochondria-targeting treatment options affecting the kidneys and the future role of mitochondria in kidney pathology

    Directed evolution of artificial repeat proteins as habit modifiers for the morphosynthesis of (111)-terminated gold nanocrystals

    Get PDF
    Natural biocomposites are shaped by proteins that have evolved to interact with inorganic materials. Protein directed evolution methods which mimic Darwinian evolution have proven highly successful to generate improved enzymes or therapeutic antibodies but have rarely been used to evolve protein–material interactions. Indeed, most reported studies have focused on short peptides and a wide range of oligopeptides with chemical binding affinity for inorganic materials have been uncovered by phage display methods. However, their small size and flexible unfolded structure prevent them from dictating the shape and crystallinity of the growing material. In the present work, a specific set of artificial repeat proteins (αRep), which exhibit highly stable 3D folding with a well-defined hypervariable interacting surface, is selected by directed evolution of a very efficient home-built protein library for their high and selective affinity for the Au(111) surface. The proteins are built from the extendable concatenation of self-compatible repeated motifs idealized from natural HEAT proteins. The high-yield synthesis of Au(111)-faceted nanostructures mediated by these αRep proteins demonstrates their chemical affinity and structural selectivity that endow them with high crystal habit modification performances. Importantly, we further exploit the protein shell spontaneously assembled on the nanocrystal facets to drive protein-mediated colloidal self-assembly and on-surface enzymatic catalysis. Our method constitutes a generic tool for producing nanocrystals with determined faceting, superior biocompatibility and versatile bio-functionalization towards plasmon-based devices and (bio)molecular sensors
    corecore