149 research outputs found

    Prometheus’s Heart: what lies beneath

    Get PDF
    A heart attack kills off many cells in the heart. Parts of the heart become thin and fail to contract properly following the replacement oflost cells by scar tissue. However, the notion that the same adult cardiomyocytes beat throughout the lifespan of the organ and organism,without the need for a minimum turnover, gives way to a fascinating investigations. Since the late 1800s, scientists and cardiologistswanted to demonstrate that the cardiomyocytes cannot be generated after the perinatal period in human beings. This curiosity hasbeen passed down in subsequent years and has motivated more and more accurate studies in an attempt to exclude the presence ofrenewed cardiomyocytes in the tissue bordering the ischaemic area, and then to confirm the dogma of the heart as terminally differentiated organ. Conversely, peri-lesional mitosis of cardiomyocytes were discovered initially by light microscopy and subsequently confirmed by more sophisticated technologies. Controversial evidence of mechanisms underlying myocardial regeneration has shown that adult cardiomyocytes are renewed through a slow turnover, even in the absence of damage. This turnover is ensured by the activationof rare clusters of progenitor cells interspersed among the cardiac cells functionally mature. Cardiac progenitor cells continuously interactwith each other, with the cells circulating in the vessels of the coronary microcirculation and myocardial cells in auto-/paracrine manner. Much remains to be understood; however, the limited functional recovery in human beings after myocardial injury clearly demonstrates weak regenerative potential of cardiomyocytes and encourages the development of new approaches to stimulate this process

    Flow cytometric analysis of extracellular vesicles from cell-conditioned media

    Full text link
    Flow cytometry (FC) is the method of choice for semi-quantitative measurement of cell-surface antigen markers. Recently, this technique has been used for phenotypic analyses of extracellular vesicles (EV) including exosomes (Exo) in the peripheral blood and other body fluids. The small size of EV mandates the use of dedicated instruments having a detection threshold around 50-100 nm. Alternatively, EV can be bound to latex microbeads that can be detected by FC. Microbeads, conjugated with antibodies that recognize EV-associated markers/Cluster of Differentiation CD63, CD9, and CD81 can be used for EV capture. Exo isolated from CM can be analyzed with or without pre-enrichment by ultracentrifugation. This approach is suitable for EV analyses using conventional FC instruments. Our results demonstrate a linear correlation between Mean Fluorescence Intensity (MFI) values and EV concentration. Disrupting EV through sonication dramatically decreased MFI, indicating that the method does not detect membrane debris. We report an accurate and reliable method for the analysis of EV surface antigens, which can be easily implemented in any laboratory

    New perspectives to repair a broken heart

    Get PDF
    The aim of cardiac cell therapy is to restore at least in part the functionality of the diseased or injured myocardium by the use of stem/ progenitor cells. Recent clinical trials have shown the safety of cardiac cell therapy and encouraging efficacy results. A surprisingly wide range of non-myogenic cell types improves ventricular function, suggesting that benefits may result in part from mechanisms that are distinct from true myocardial regeneration. While clinical trials explore cells derived from skeletal muscle and bone marrow, basic researchers are investigating sources of new cardiomyogenic cells, such as resident myocardial progenitors and embryonic stem cells. In this commentary we briefly review the evolution of cell-based cardiac repair, some progress that has been made toward this goal, and future perspectives in the regeneration of cardiac tissue. © 2009 Bentham Science Publishers Ltd

    Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart

    Get PDF
    Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs

    Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction

    Get PDF
    Aims Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function after injury. The underlying mechanisms are indirect, but their mediators remain unidentified. Exosomes and other secreted membrane vesicles, hereafter collectively referred to as extracellular vesicles (EVs), act as paracrine signalling mediators. Here, we report that EVs secreted by human CPCs are crucial cardioprotective agents. Methods and results CPCs were derived from atrial appendage explants from patients who underwent heart valve surgery. CPC-conditioned medium (CM) inhibited apoptosis in mouse HL-1 cardiomyocytic cells, while enhancing tube formation in human umbilical vein endothelial cells. These effects were abrogated by depleting CM of EVs. They were reproduced by EVs secreted by CPCs, but not by those secreted by human dermal fibroblasts. Transmission electron microscopy and nanoparticle tracking analysis showed most EVs to be 30-90 nm in diameter, the size of exosomes, although smaller and larger vesicles were also present. MicroRNAs most highly enriched in EVs secreted by CPCs compared with fibroblasts included miR-210, miR-132, and miR-146a-3p. miR-210 down-regulated its known targets, ephrin A3 and PTP1b, inhibiting apoptosis in cardiomyocytic cells. miR-132 down-regulated its target, RasGAP-p120, enhancing tube formation in endothelial cells. Infarcted hearts injected with EVs from CPCs, but not from fibroblasts, exhibited less cardiomyocyte apoptosis, enhanced angiogenesis, and improved LV ejection fraction (0.8 ± 6.8 vs. −21.3 ± 4.5%; P < 0.05) compared with those injected with control medium. Conclusion EVs are the active component of the paracrine secretion by human CPCs. As a cell-free approach, EVs could circumvent many of the limitations of cell transplantatio

    De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients

    Get PDF
    DNA methylation is associated with gene silencing, but its clinical role in cardiovascular diseases (CVDs) remains to be elucidated. We hypothesized that extracellular vesicles (EVs) may carry epigenetic changes, showing themselves as a potentially valuable non-invasive diagnostic liquid biopsy. We isolated and characterized circulating EVs of acute coronary syndrome (ACS) patients and assessed their role on DNA methylation in epigenetic modifications

    Identification of a serum and urine extracellular vesicle signature predicting renal outcome after kidney transplant

    Get PDF
    Background A long-standing effort is dedicated towards the identification of biomarkers allowing the prediction of graft outcome after kidney transplant. Extracellular vesicles (EVs) circulating in body fluids represent an attractive candidate, as their cargo mirrors the originating cell and its pathophysiological status. The aim of the study was to investigate EV surface antigens as potential predictors of renal outcome after kidney transplant. Methods We characterized 37 surface antigens by flow cytometry, in serum and urine EVs from 58 patients who were evaluated before, and at 10-14 days, 3 months and 1 year after transplant, for a total of 426 analyzed samples. The outcome was defined according to estimated glomerular filtration rate (eGFR) at 1 year. Results Endothelial cells and platelets markers (CD31, CD41b, CD42a and CD62P) in serum EVs were higher at baseline in patients with persistent kidney dysfunction at 1 year, and progressively decreased after kidney transplant. Conversely, mesenchymal progenitor cell marker (CD1c, CD105, CD133, SSEEA-4) in urine EVs progressively increased after transplant in patients displaying renal recovery at follow-up. These markers correlated with eGFR, creatinine and proteinuria, associated with patient outcome at univariate analysis and were able to predict patient outcome at receiver operating characteristics curves analysis. A specific EV molecular signature obtained by supervised learning correctly classified patients according to 1-year renal outcome. Conclusions An EV-based signature, reflecting the cardiovascular profile of the recipient, and the repairing/regenerative features of the graft, could be introduced as a non-invasive tool for a tailored management of follow-up of patients undergoing kidney transplant

    A dynamic clamping approach using in silico IK1 current for discrimination of chamber-specific hiPSC-derived cardiomyocytes

    Get PDF
    : Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) constitute a mixed population of ventricular-, atrial-, nodal-like cells, limiting the reliability for studying chamber-specific disease mechanisms. Previous studies characterised CM phenotype based on action potential (AP) morphology, but the classification criteria were still undefined. Our aim was to use in silico models to develop an automated approach for discriminating the electrophysiological differences between hiPSC-CM. We propose the dynamic clamp (DC) technique with the injection of a specific IK1 current as a tool for deriving nine electrical biomarkers and blindly classifying differentiated CM. An unsupervised learning algorithm was applied to discriminate CM phenotypes and principal component analysis was used to visualise cell clustering. Pharmacological validation was performed by specific ion channel blocker and receptor agonist. The proposed approach&nbsp;improves the translational relevance of the hiPSC-CM model for studying mechanisms underlying inherited or acquired atrial arrhythmias in human CM, and for screening anti-arrhythmic agents
    corecore