11 research outputs found

    Expanding the clinical and genetic heterogeneity of SPAX5

    Get PDF
    Mutations in the ATPase family 3-like gene (AFG3L2) have been linked to autosomal-dominant spinocerebellar ataxia type 28 and autosomal recessive spastic ataxia-neuropathy syndrome. Here, we describe the case of a child carrying bi-allelic mutations in AFG3L2 and presenting with ictal paroxysmal episodes associated with neuroimaging suggestive of basal ganglia involvement. Studies in skin fibroblasts showed a significant reduction of AFG3L2 expression. The relatively mild clinical presentation and the benign course, in spite of severe neuroimaging features, distinguish this case from data reported in the literature, and therefore expand the spectrum of neurological and neuroradiological features associated with AFG3L2 mutations

    Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience

    Get PDF
    The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients\u2019 selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era

    Clinical-Genetic Features Influencing Disability in Spastic Paraplegia Type 4: A Cross-sectional Study by the Italian DAISY Network

    Get PDF
    Background and objectives: Hereditary spastic paraplegias (HSPs) are a group of inherited rare neurologic disorders characterized by length-dependent degeneration of the corticospinal tracts and dorsal columns, whose prominent clinical feature is represented by spastic gait. Spastic paraplegia type 4 (SPG4, SPAST-HSP) is the most common form. We present both clinical and molecular findings of a large cohort of patients, with the aim of (1) defining the clinical spectrum of SPAST-HSP in Italy; (2) describing their molecular features; and (3) assessing genotype-phenotype correlations to identify features associated with worse disability. Methods: A cross-sectional retrospective study with molecular and clinical data collected in an anonymized database was performed. Results: A total of 723 Italian patients with SPAST-HSP (58% men) from 316 families, with a median age at onset of 35 years, were included. Penetrance was 97.8%, with men showing higher Spastic Paraplegia Rating Scale (SPRS) scores (19.67 ± 12.58 vs 16.15 ± 12.61, p = 0.009). In 26.6% of patients with SPAST-HSP, we observed a complicated phenotype, mainly including intellectual disability (8%), polyneuropathy (6.7%), and cognitive decline (6.5%). Late-onset cases seemed to progress more rapidly, and patients with a longer disease course displayed a more severe neurologic disability, with higher SPATAX (3.61 ± 1.46 vs 2.71 ± 1.20, p < 0.001) and SPRS scores (22.63 ± 11.81 vs 12.40 ± 8.83, p < 0.001). Overall, 186 different variants in the SPAST gene were recorded, of which 48 were novel. Patients with SPAST-HSP harboring missense variants displayed intellectual disability (14.5% vs 4.4%, p < 0.001) more frequently, whereas patients with truncating variants presented more commonly cognitive decline (9.7% vs 2.6%, p = 0.001), cerebral atrophy (11.2% vs 3.4%, p = 0.003), lower limb spasticity (61.5% vs 44.5%), urinary symptoms (50.0% vs 31.3%, p < 0.001), and sensorimotor polyneuropathy (11.1% vs 1.1%, p < 0.001). Increasing disease duration (DD) and abnormal motor evoked potentials (MEPs) were also associated with increased likelihood of worse disability (SPATAX score>3). Discussion: The SPAST-HSP phenotypic spectrum in Italian patients confirms a predominantly pure form of HSP with mild-to-moderate disability in 75% of cases, and slight prevalence of men, who appeared more severely affected. Early-onset cases with intellectual disability were more frequent among patients carrying missense SPAST variants, whereas patients with truncating variants showed a more complicated disease. Both longer DD and altered MEPs are associated with worse disability

    Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study

    Get PDF
    Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity-there are over 80 potential disease-associated genes-and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several in silico tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy

    SPG8 mutations in Italian families: clinical data and literature review

    No full text
    Abstract Background Spastic paraplegia type 8 (SPG8) is an autosomal-dominant form of hereditary spastic paraplegia (AD-HSP) caused by a mutation in the KIAA0196 gene. SPG8 accounts for 1% of less of all AD-HSP and the genotype–phenotype correlation remains poorly understood. Methods We report the first clinical and genetic description of SPG8 disease in Italian patients. We identified four new mutations in KIAA0196 gene. These variants were identified using a multigene targeted resequencing HSP panel. We took this opportunity to review the pertinent literature. Results Age at disease onset was in the third or fourth decade of life. Stiffness of the lower limb with spastic gait, walking impairment, and decreased vibration sense were common early symptoms. Subjects of two families had bladder control abnormalities. Unlike previous reported cases, Italian SPG8 subjects have pure form of spastic paraparesis without cranial nerve involvement, and onset is in adult life. Discussion By a clinical point of view, it is hard to differentiate SPG8 from the SPG4, in which bladder and vibration sense dysfunctions are frequent signs. The differential diagnosis with other forms of AD-HSPs seems relatively easier if one considers the early-onset manifestations in SPG3A and the peripheral nervous system and cerebellar involvement seen in SPG31

    Spinocerebellar ataxia type 48: last but not least

    No full text
    Biallelic mutations in STUB1, which encodes the E3 ubiquitin ligase CHIP, were originally described in association with SCAR16, a rare autosomal recessive spinocerebellar ataxia, so far reported in 16 kindreds. In the last 2 years, a new form of spinocerebellar ataxia (SCA48), associated with heterozygous mutations in the same gene, has been described in 12 kindreds with autosomal dominant inheritance. Methods We reviewed molecular and clinical findings of both SCAR16 and SCA48 described patients. Results and conclusion SCAR16 is characterized by early onset spastic ataxia and a wide disease spectrum, including cognitive dysfunction, hyperkinetic disorders, epilepsy, peripheral neuropathy, and hypogonadism. SCA48 is an adult-onset syndrome characterized by ataxia and cognitive-psychiatric features, variably associated with chorea, parkinsonism, dystonia, and urinary symptoms. SCA48, the last dominant ataxia to be described, could emerge as the most frequent among the SCAs due to conventional mutations. The overlap of several clinical signs between SCAR16 and SCA48 indicates the presence of a continuous clinical spectrum among recessively and dominantly inherited mutations of STUB1. Different kinds of mutations, scattered over the three gene domains, have been found in both disorders. Their pathogenesis and the relationship between SCA48 and SCAR16 remain to be clarified

    Neuroacanthocytosis Syndromes in an Italian Cohort: Clinical Spectrum, High Genetic Variability and Muscle Involvement

    No full text
    Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis, progressive degeneration of the basal ganglia and neuromuscular features with characteristic persistent hyperCKemia. The main NA syndromes include autosomal recessive chorea-acanthocytosis (ChAc) and X-linked McLeod syndrome (MLS). A series of Italian patients selected through a multicenter study for these specific neurological phenotypes underwent DNA sequencing of the VPS13A and XK genes to search for causative mutations. Where it has been possible, muscle biopsies were obtained and thoroughly investigated with histochemical assays. A total of nine patients from five different families were diagnosed with ChAC and had mostly biallelic changes in the VPS13A gene (three nonsense, two frameshift, three splicing), while three patients from a single X-linked family were diagnosed with McLeod syndrome and had a deletion in the XK gene. Despite a very low incidence (only one thousand cases of ChAc and a few hundred MLS cases reported worldwide), none of the 8 VPS13A variants identified in our patients is shared by two families, suggesting the high genetic variability of ChAc in the Italian population. In our series, in line with epidemiological data, McLeod syndrome occurs less frequently than ChAc, although it can be easily suspected because of its X-linked mode of inheritance. Finally, histochemical studies strongly suggest that muscle pathology is not simply secondary to the axonal neuropathy, frequently seen in these patients, but primary myopathic alterations can be detected in both NA syndromes

    Defining the clinical-genetic and neuroradiological features in SPG54: description of eight additional cases and nine novel DDHD2 variants

    No full text
    Recessive mutations in DDHD2 cause SPG54, a complex hereditary spastic paraplegia (HSP) with less than forty patients reported worldwide. In this retrospective, multicenter study we describe eight additional SPG54 cases harboring homozygous or compound heterozygous DDHD2 variants. Finally, we reviewed literature data on SPG54, with the aim to better define the phenotype and the brain magnetic resonance imaging (MRI) pattern as well as genotype-phenotype correlations. SPG54 is typically characterized by early-onset (i.e., congenital or, more frequently, infantile) delay in motor and cognitive milestones, coupled or followed by appearance of spasticity. Cognitive impairment is absent in adult-onset cases. Spasticity progresses over time. Abnormal eye movement, found in about 50% of cases, is the feature most frequently associated with spasticity and developmental delay. Cerebellar ataxia is a prominent sign in several patients, including one adult of this study, suggesting to include SPG54 in the differential diagnosis of spastic-ataxia syndromes. Brain MRI shows thin corpus callosum and non-specific periventricular white matter lesions in about 90% and 70% of cases, respectively. Brain MR spectroscopy reveals abnormal lipid peak in 90% of investigated patients. Twenty-one pathogenic changes have been reported so far, many of which are nonsense or small deletion/duplication. Most mutations appear to be private, with only two mutations recurring in three (i.e., R287*) or more families (i.e., D660H). The identification of nine novel variants expands the molecular spectrum of DDHD2-related HSP and corroborates the notion of a quite homogeneous clinical and neuroradiological phenotype in spite of different genotypes

    NGS in Hereditary Ataxia: When Rare Becomes Frequent

    No full text
    The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice
    corecore