48 research outputs found

    Measurement of charge and light yields for Xe 127 L -shell electron captures in liquid xenon

    Get PDF
    Dark matter searches using dual-phase xenon time-projection chambers (LXe-TPCs) rely on their ability to reject background electron recoils (ERs) while searching for signal-like nuclear recoils (NRs). ER response is typically calibrated using β-decay sources, such as tritium, but these calibrations do not characterize events accompanied by an atomic vacancy, as in solar neutrino scatters off inner-shell electrons. Such events lead to emission of x rays and Auger electrons, resulting in higher electron-ion recombination and thus a more NR-like response than inferred from β-decay calibration. We present a cross-calibration of tritium β-decays and Xe127 electron-capture decays (which produce inner-shell vacancies) in a small-scale LXe-TPC and give the most precise measurements to date of light and charge yields for the Xe127 L-shell electron-capture in liquid xenon. We observe a 6.9σ (9.2σ) discrepancy in the L-shell capture response relative to tritium β decays, measured at a drift field of 363±14 V/cm (258±13 V/cm), when compared to simulations tuned to reproduce the correct β-decay response. In dark matter searches, use of a background model that neglects this effect leads to overcoverage (higher limits) for background-only multi-kiloton-year exposures, but at a level much less than the 1-σ experiment-to-experiment variation of the 90% C.L. upper limit on the interaction rate of a 50 GeV/c2 dark matter particle

    First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

    Get PDF
    The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c2. The most stringent limit is set for spin-independent scattering at 36 GeV/c2, rejecting cross sections above 9.2×10-48 cm at the 90% confidence level

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Cosmogenic production of {37}^Ar in the context of the LUX-ZEPLIN experiment

    Get PDF
    We estimate the amount of {37}^Ar produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting {37}^Ar concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of {37}^Ar in natural xenon is estimated to be 0.024 atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne/month, the average {37}^Ar activity after 10 tons are purified and transported underground is 0.058 - 0.090 μ Bq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic {37}^Ar will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of {37}^Ar should be considered when planning for future liquid-xenon-based experiments

    A search for new physics in low-energy electron recoils from the first LZ exposure

    Full text link
    The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axion-like particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect.Comment: 13 pages, 10 figures. See https://tinyurl.com/LZDataReleaseRun1ER for a data release related to this pape

    Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double β decays of Xe 134

    Get PDF
    The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double β decay of Xe134 is presented. LZ is a 10-tonne xenon time-projection chamber optimized for the detection of dark matter particles and is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double β decay of Xe134, for which xenon detectors enriched in Xe136 are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7×1024 years at 90% confidence level (CL) and has a three-sigma observation potential of 8.7×1023 years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3×1024 years at 90% CL

    Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment

    Full text link
    The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to 9.2×10489.2\times10^{-48} cm2^2 for the spin-independent interaction of a 36 GeV/c2^2 WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was (6.3±0.5)×105(6.3\pm0.5)\times10^{-5} events/keVee_{ee}/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment.Comment: 25 pages, 15 figure

    First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

    Full text link
    The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LZ's first search for Weakly Interacting Massive Particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross-sections for WIMP masses above 9 GeV/c2^2. The most stringent limit is set at 30 GeV/c2^2, excluding cross sections above 5.9×1048\times 10^{-48} cm2^2 at the 90\% confidence level.Comment: 9 pages, 6 figures. See https://tinyurl.com/LZDataReleaseRun1 for a data release related to this pape

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br
    corecore