34 research outputs found

    Origin, ore forming fluid evolution and timing of the Logrosán Sn-(W) ore deposits (Central Iberian Zone, Spain)

    Get PDF
    The Logrosán Sn–(W) ore deposits in the metallogenic Sn–W province of the European Variscan Belt consist of endo- and exogranitic greisen-type and quartz–cassiterite veins associated with a S-type granite. Mineral characterization, fluid inclusion study, isotope geochemistry and Ar–Ar geochronology have been combined in order to reconstruct the conditions for Sn–(W) mineralization. The endo- and exogranitic mineralization must have been developed in a relatively long-lived system (~ 308–303 Ma), during or soon after the emplacement of the Logrosán related-granite (at ca. 308 Ma). The mineralizing fluids are characterized by complex aqueous and volatile (H2O–N2–CO2–CH4–NaCl) fluid inclusions. Microthermometry and Raman analyses indicate that fluid composition evolved from N2–CH4 to N2-rich, followed by CO2-rich fluids, with varying amounts of H2O. The presence of N2 and CH4 suggests the interaction with fluids derived from the nearby metasedimentary host rocks. A model of host-rock interaction, assimilation, and mixing of metamorphic and magmatic fluids, resulting in change of the redox conditions, is proposed for tin deposition. Later sulfide minerals were precipitated as a result of pressure and temperature release

    The eruptive history and magmatic evolution of Aluto volcano: new insights into silicic peralkaline volcanism in the Ethiopian rift

    Get PDF
    The silicic peralkaline volcanoes of the East African Rift are some of the least studied volcanoes on Earth. Here we bring together new constraints from fieldwork, remote sensing, geochronology and geochemistry to present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in a densely populated section of the Main Ethiopian Rift. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at 316 ± 19 ka and 306 ± 12 ka developing a ~ 42 km2 collapse structure. After a hiatus of ~ 250 ka, a phase of post-caldera volcanism initiated at 55 ± 19 ka and the most recent eruption of Aluto has a radiocarbon age of 0.40 ± 0.05 cal. ka BP. During this post-caldera phase highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (> 80%) of basalt that is compositionally similar to rift-related basalts found east of the complex. Based on the style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes in the range 1–100 × 106 m3

    Timing and consequences of Bering Strait opening: new insights from 40Ar/39 1 Ar dating 2 of the Barmur Group (Tjörnes beds), northern Iceland

    Get PDF
    The Barmur Group (informally Tjörnes beds) sedimentary succession of northern Iceland is key to reconstructing the opening of the Bering Strait oceanic gateway because these rocks record migration of bivalve molluscs from the Pacific to the Atlantic via the Arctic. However, the timing of the migration event is poorly constrained owing to a lack of reliable absolute ages. To address this problem, we present the first Ar-Ar radiometric dates from four basaltic lavas that underlie, are intercalated with, and overlie the Barmur Group, and integrate them with existing paleomagnetic records. We show that the Barmur Group has a latest Miocene to early Pliocene age range (c. 6.0–4.4 Ma; C3r–C3n.2n), older than all previous age models. Thus, the Barmur Group does not record the mid-Piacenzian Warm Period, contra some previous suggestions. Abundant Pacific bivalve molluscs appeared in the Barmur Group during subchrons C3n.4n–C3n.3r at 5.235–4.896 Ma, over 1.3 million years earlier than previously suggested. Appearance of Pacific bivalves in the northern Atlantic occurred shortly after the 5.6–5.4 Ma age previously inferred for first appearance of Arctic bivalves in the Pacific. Thus, our data suggest that first opening of the Bering Strait gateway by the latest Miocene (c. 5.5 Ma) was soon followed by bidirectional trans-Arctic faunal exchange, and argue against a hypothesized two-stage faunal exchange process spanning c. 2 million years. Our results also confirm that first opening of the Bering Strait gateway was not directly associated with the growth of large northern hemisphere icesheets, which occurred several million years later

    Duration of hydrothermal alteration and mineralization of the Don Manuel porphyry copper system, central Chile

    Get PDF
    The Don Manuel porphyry copper system, located in the Miocene–Pliocene metallogenic belt of central Chile, contains spatially zoned alteration styles common to other porphyry copper deposits including extensive potassic alteration, propylitic alteration, localized sericite-chlorite alteration and argillic alteration but lacks pervasive hydrolytic alteration typical of some deposits. It is one of the youngest porphyry copper deposits in the Andes. Timing of mineralization and the hydrothermal system at Don Manuel are consistent with emplacement of the associated intrusions (ca. 4 and 3.6 Ma). Two molybdenite samples yielded consistent ages of 3.412 ± 0.037 and 3.425 ± 0.037 Ma. 40Ar/39Ar ages on hydrothermal biotites (3.57 ± 0.02, 3.51 ± 0.02, 3.41 ± 0.01, and 3.37 ± 0.01 Ma) are associated with potassic alteration. These ages are younger than the youngest intrusion by ~300 k.y. recording the cooling of the system below 350 °C. Such a time gap can be explained by fluxing of hot magmatic fluids from deeper magmatic sources

    Petrogenesis of Siletzia: the world’s youngest oceanic plateau

    Get PDF
    Siletzia is an accreted Palaeocene-Eocene Large Igneous Province, preserved in the northwest United States and southern Vancouver Island. Although previous workers have suggested that components of Siletzia were formed in tectonic settings including back arc basins, island arcs and ocean islands, more recent work has presented evidence for parts of Siletzia to have formed in response to partial melting of a mantle plume. In this paper, we integrate geochemical and geochronological data to investigate the petrogenetic evolution of the province. The major element geochemistry of the Siletzia lava flows is used to determine the compositions of the primary magmas of the province, as well as the conditions of mantle melting. These primary magmas are compositionally similar to modern Ocean Island and Mid-Ocean Ridge lavas. Geochemical modelling of these magmas indicates they predominantly evolved through fractional crystallisation of olivine, pyroxenes, plagioclase, spinel and apatite in shallow magma chambers, and experienced limited interaction with crustal components. Further modelling indicates that Siletzia magmatism was derived from anomalously hot mantle, consistent with an origin in a mantle plume. This plume has been suggested to have been the same as that responsible for magmatism within the Yellowstone Plateau. Trace element compositions of the most primitive Siletzia lavas are similar to suites associated with the Yellowstone Mantle Plume, suggesting that the two provinces were derived from compositionally similar sources. Radiogenic isotope systematics for Siletzia consistently overlap with some of the oldest suites of the Yellowstone Magmatic Province. Therefore, we suggest Siletzia and the Yellowstone Mantle Plume are part of the same, evolving mantle plume system. Our new geochronological data show the province was emplaced during the time when Eocene sea surface temperatures were their highest. The size of Siletzia makes the province a potential contributing factor to the biospheric perturbation observed in the early Eocene

    Humid phases on the southwestern Arabian Peninsula are consistent with the last two interglacials

    Get PDF
    Past environmental and climatic conditions within the Arabian Peninsula are key to understanding the setting for hominin dispersal across the Saharo-Arabian dryland belt. The tufa deposits within the volcanic harrats on the southwest coast of Saudi Arabia fill a significant spatial gap in the distribution of palaeoenvironmental records on the west coast of the Arabian Peninsula adjacent to the Red Sea. In the catchment of Wadi Dabsa in the Harrat Al Birk, there are widespread fossil palustrine to shallow-lacustrine tufa deposits with fluvial elements. Several phases of tufa accumulation, separated by fluvial downcutting, are observable within these powerful palaeoenvironmental proxies. U–Th dating of targeted dense, banded tufa facies, yield ages that are stratigraphically consistent at the landscape scale, and indicate that tufa accumulation occurred during distinct humid phases broadly coeval with the last two warm interglacial Marine Isotope Stages (MIS 7 and MIS 5). For the first time this shows humid intervals in southwest Arabia coincident with the southern coast. There is a simlar pattern emerging further north in the Arabian Peninsula, The Sinai and Levant and further on into continental Europe. Furthermore, tufa δ18O ranges from −14.6 to −1.9‰, covering a range similar to those reported for tufa from north African oasis sites and speleothems elsewhere on the Arabian Peninsula and The Levant. The lowest δ18O values are derived from MIS 5e samples, a pattern in agreement with speleothems in Yemen and Oman, and consistent with an isotopic-enabled climate model simulation for this time slice. The δ13C and Sr isotopic compositions of dated tufa samples indicate deposition from shallow-circulating meteoric water, with no geothermal influence. This, along with the δ18O values, suggest a freshwater supply that was a potable water source in this landscape. The δ13C signatures at Wadi Dabsa are more negative than for parts of north Africa, suggesting Wadi Dabsa may have experienced comparatively higher biomass, thicker soils and wetter conditions with lower evaporative losses. This new record of tufa deposition during the middle and late Pleistocene, suggests for the first time that the west coast of Arabia experienced a similar history of humid phases over the past 250 ka as southern Arabia and the Nefud in the northern interior. These regional changes in hydroclimatic regime occur at timescales coincident with hominin dispersals
    corecore