15 research outputs found

    Production of embryos and a live offspring using post mortem reproductive material from bison (Bison bison bison) originating in Yellowstone National Park, USA

    Get PDF
    Bison from Yellowstone National Park (YNP) have an important genetic history. As one of the few wild herds of bison with no evidence of cattle DNA introgression and a large enough population to maintain genetic diversity, they are considered a conservation priority for the species. Unfortunately, there is a high prevalence of the zoonotic disease brucellosis in the herd. Part of the management strategy for controlling the disease and herd size in YNP is to remove bison from the population during the winter migration out of the park. This interagency management cull provides an opportunity to collect a large number of oocytes from a wild bison population for genetic banking and research purposes. During the winters of 2014–2018, which is the nonbreeding season for bison, oocytes were collected post mortem and used to determine the effects of donor reproductive maturity and pregnancy status on oocyte quality and in vitro fertilization (IVF) outcomes, and to demonstrate the feasibility of producing healthy offspring. Cumulus oocyte complexes (COCs) were placed into an in vitro embryo production (IVP) system, and on days 7, 7.5, and 8 of in vitro culture (Day 0 = day of in vitro fertilization) embryos were assessed for developmental stage and quality prior to vitrification. Embryos were then stored in liquid nitrogen until the breeding season when a subset were warmed, cultured for 6 h, evaluated for survival, and transferred to healthy bison recipients. There were no significant differences in the ability of recovered COCs to support blastocyst development based on female reproductive maturity or pregnancy status (juvenile 79/959 (8.2%) vs sexually mature 547/6544 (8.4%); non-pregnant 188/2302 (8.2%) vs pregnant 556/6122 (9.1%)). Following the transfer of 15 embryos to 10 recipients, one healthy female calf was born. This work demonstrates that live offspring can be generated from COCs collected from YNP bison post mortem in the non-breeding season, and that gamete recovery can be a valuable tool for conservation of valuable genetics for this species while mitigating diseases like brucellosis

    Towards a method for cryopreservation of mosquito vectors of human pathogens

    Get PDF
    Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes

    A Reference Genome Assembly of Simmental Cattle, \u3ci\u3eBos taurus taurus\u3c/i\u3e

    Get PDF
    Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison-cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS-Simm1.0) is similar in length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date

    A Reference Genome Assembly of American Bison, \u3ci\u3eBison bison bison\u3c/i\u3e

    Get PDF
    Bison are an icon of the American West and an ecologically, commercially, and culturally important species. Despite numbering in the hundreds of thousands today, conservation concerns remain for the species, including the impact on genetic diversity of a severe bottleneck around the turn of the 20th century and genetic introgression from domestic cattle. Genetic diversity and admixture are best evaluated at genome-wide scale, for which a high-quality reference is necessary. Here, we use trio binning of long reads from a bison-Simmental cattle (Bos taurus taurus) male F1 hybrid to sequence and assemble the genome of the American plains bison (Bison bison bison). The male haplotype genome is chromosome-scale, with a total length of 2.65 Gb across 775 scaffolds (839 contigs) and a scaffold N50 of 87.8 Mb. Our bison genome is ∼13× more contiguous overall and ∼3400× more contiguous at the contig level than the current bison reference genome. The bison genome sequence presented here (ARS-UCSC-bison1.0) will enable new research into the evolutionary history of this iconic megafauna species and provide a new tool for the management of bison populations in federal and commercial herds

    A reference genome assembly of Simmental cattle, Bos taurus taurus

    No full text
    Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison-cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar in length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date
    corecore