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ABSTRACT

Bison from Yellowstone National Park (YNP) have an important genetic history. As one of the few wild
herds of bison with no evidence of cattle DNA introgression and a large enough population to maintain
genetic diversity, they are considered a conservation priority for the species. Unfortunately, there is a
high prevalence of the zoonotic disease brucellosis in the herd. Part of the management strategy for
controlling the disease and herd size in YNP is to remove bison from the population during the winter
migration out of the park. This interagency management cull provides an opportunity to collect a large
number of oocytes from a wild bison population for genetic banking and research purposes. During the
winters of 2014—2018, which is the nonbreeding season for bison, oocytes were collected post mortem
and used to determine the effects of donor reproductive maturity and pregnancy status on oocyte quality
and in vitro fertilization (IVF) outcomes, and to demonstrate the feasibility of producing healthy
offspring. Cumulus oocyte complexes (COCs) were placed into an in vitro embryo production (IVP)
system, and on days 7, 7.5, and 8 of in vitro culture (Day O = day of in vitro fertilization) embryos were
assessed for developmental stage and quality prior to vitrification. Embryos were then stored in liquid
nitrogen until the breeding season when a subset were warmed, cultured for 6 h, evaluated for survival,
and transferred to healthy bison recipients. There were no significant differences in the ability of
recovered COCs to support blastocyst development based on female reproductive maturity or pregnancy
status (juvenile 79/959 (8.2%) vs sexually mature 547/6544 (8.4%); non-pregnant 188/2302 (8.2%) vs
pregnant 556/6122 (9.1%)). Following the transfer of 15 embryos to 10 recipients, one healthy female calf
was born. This work demonstrates that live offspring can be generated from COCs collected from YNP
bison post mortem in the non-breeding season, and that gamete recovery can be a valuable tool for
conservation of valuable genetics for this species while mitigating diseases like brucellosis.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

competition for natural resources from domestic livestock, result-
ing in a drastic reduction of the bison population to fewer than 100

North American bison (Bison bison) are an iconic species of
cultural, conservation, and commercial importance. In the late
1800s, expansion of transcontinental railroads increased the
impact of anthropogenic threats such as overhunting and
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individuals on 5 private ranches, and a small population of wild
plains bison (Bison bison bison) remaining in Yellowstone National
Park (YNP) [1—4]. Today’s bison population of approximately
500,000 animals descended from these foundation herds. Despite
this impressive comeback, bison are still considered near threat-
ened by the International Union for Conservation of Nature (IUCN)
red list, with only 31,000 animals in conservation herds that are
defined as wild (a population size large enough to prevent genetic

0093-691X/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Jennifer.Barfield@colostate.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.theriogenology.2020.10.022&domain=pdf
www.sciencedirect.com/science/journal/0093691X
www.theriojournal.com
https://doi.org/10.1016/j.theriogenology.2020.10.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.theriogenology.2020.10.022
https://doi.org/10.1016/j.theriogenology.2020.10.022

H.M. Benham, M.P. McCollum, P. Nol et al.

loss and subject to the forces of natural selection) [5,6]. In addition,
at the time when the 5 original foundation herds were being
established, ranchers were experimenting with bison-cattle (Bos
taurus) hybrid crosses to improve range hardiness in their cattle
herds. These human-facilitated crosses, and possibly some natu-
rally occurring ones, resulted in cattle DNA introgression in herds
that became the foundation stock for many of the bison in existence
today. In fact, a 2007 study reported that evidence of cattle intro-
gression was found in nearly half of US and Canadian public herds
(6 of 14), and all except 1 of 50 private herds examined [7]. As
hybrid species are exempt from taxonomic status and are not
recognized by the U.S. Endangered Species Act, as well as for their
cultural significance, bison without cattle gene introgression are
considered a valuable source for germplasm and are a conservation
priority for the species.

The YNP bison population is considered a particularly valuable
genetic resource because it has the largest population of plains
bison (>3,000 individuals) of the 4 US federal herds with no evi-
dence of having bred with cattle, and the bison are considered wild
[7]. Unfortunately, removing bison from YNP for conservation and
cultural purposes has been limited due to the high prevalence of
brucellosis, a zoonotic bacterial disease that causes abortions in
livestock and wildlife, and long-term illness in humans [8]. This
negatively impacts the ability of herd managers to introduce bison
with valuable YNP genetics into existing herds or during the
establishment of new herds without an extended quarantine pro-
cesses which can be costly and labor intensive.

Advances in reproductive technologies including cryopreserva-
tion of germplasm have made genetic resource banking an
invaluable tool in conservation biology. We now have the ability to
preserve many species, both exotic and domestic, using frozen
reproductive cells, tissues, and embryos that have been stored for
extended periods of time [9—11]. In addition to these techniques,
in vitro production of embryos may provide a means to conserve
valuable genetics in threatened bison populations while mitigating
the transmission of brucellosis [12]. In vitro-produced embryos
from potentially diseased animals can be washed free of bacterial
pathogens using a protocol described by the International Embryo
Technology Society (IETS) and then transferred to disease-free re-
cipients, thereby virtually eliminating the risk of transferring
brucellosis into a healthy herd and allowing propagation of
genetically valuable bison [13]. These technologies (in vitro embryo
production, embryo washing, cryopreservation and embryo trans-
fer) were combined in this study towards the goal of establishing a
biobank of bison embryos with Yellowstone genetics while miti-
gating the risks of brucellosis.

In vitro embryo production in bison was first reported in wood
bison (Bison bison athabascae) using protocols based on IVP
methods developed for cattle, but blastocyst production was low
(<10%) [14,15]. Although there are few studies of in vitro embryo
production in bison due to limited sources for abattoir-derived
oocytes for research purposes, the existing research suggests that
modification of cattle IVP protocols to create bison-specific
methods may improve blastocyst production. For example, the
addition of 5% fetal calf serum (FCS) to culture medium after the 8-
cell stage of embryonic development increases blastocyst devel-
opment in plains bison [16].

Bison are seasonal breeders, entering estrus during the late
summer or early autumn in North America [17]. Seasonality may
impact the developmental potential of abattoir-derived oocytes.
Embryonic cleavage after in vitro fertilization (IVF) is reduced in the
non-breeding season, although blastocyst development is not
significantly affected for wood bison [18,19]. However, this
demonstration that bison blastocysts can be produced outside the
breeding season suggests that material recovered from the annual
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bison culls from YNP, which take place in winter, can potentially be
used for IVP and embryo transfer to produce live offspring
[16,18,19].

The study presented here is a retrospective analysis of data
generated during the winters (nonbreeding season) of 2014—2018.
During this time period, our laboratory, in partnership with United
States Department of Agriculture (USDA)-Animal and Plant Health
Inspection Service (APHIS), collected reproductive material from
bison during the annual cull of YNP bison. Part of the current
Interagency Bison Management Plan (IBMP) requires removal of an
annually determined number of bison that migrate outside of the
park to control population numbers and reduce the risk of trans-
mission of brucellosis from bison to cattle [20,21]. Many of these
bison go to slaughter, and until now, there has been no attempt to
recover and preserve their genetics. As the YNP cull is non-selective
(not based on individual animal parameters such as age, sex, dis-
ease status, or pregnancy status), we were able compare oocyte
quality and IVP outcomes based on reproductive maturity and
pregnancy status for a large number of animals. We then assessed
the feasibility of producing live offspring from embryos generated
through the IVP process. The results presented here support the use
of this approach for mitigating the risk of brucellosis while pre-
serving valuable bison genetics and led to the establishment a
biobank of embryos with Yellowstone bison genetics.

2. Materials and methods
2.1. Animals

Reproductive material from female bison (ovaries) was recov-
ered from animals culled during the winters of 2014—2018, spe-
cifically in the months January—March. Pregnancy status was
determined by presence of a fetus in the uterus (pregnant, n = 352;
non pregnant, n = 119), and ovaries grouped accordingly. When
possible, animals were aged according to tooth eruption, and
ovaries were collected from juveniles (1.5-2.5y, n = 49) and adults
(3+ y, n = 363). Maturity status was not recorded for animals
collected in 2016, therefore oocyte and embryo outcomes resulting
from those collections are only included in data sets categorized by
pregnancy status. Ovaries were harvested from 49 juvenile, 62
mature non-pregnant and 301 mature pregnant female bison in the
years 2014, 2015, 2017 and 2018, and from 8 non-pregnant and 51
pregnant female bison in 2016, for a total of 471 females. Disease
status of the animals was unknown. Semen from YNP bison bulls
was collected either via electroejaculation or from epididymal
flushes post mortem during the breeding season. All embryo
transfers and semen collections were approved by the Animal Care
and Use Committee at Colorado State University (CSU), IACUC
protocol 17—7117A.

2.2. In vitro embryo production

2.2.1. Ovary collection and oocyte recovery

Ovaries were collected within 10 min of slaughter from January
to March. Ovaries from individual donors were transported in
separate sealed plastic bags containing ~50 mL sterile saline and
kept at 25—28 °C in an insulated canister. At the time of ovary
collection, donor age and pregnancy status were recorded. Cumulus
oocyte complexes (COCs) were vacuum aspirated from all visible
follicles within 2 h of ovary collection, and COCs were collected and
washed through CSU chemically defined medium for handling of
oocytes (HCDM-M) with 10% BSA and 10 mg/mL gentamicin sulfate
[16,22]. Visibly degenerate COCs were excluded; no other selection
of COCs was done prior to IVM. Aspirates from individual donors
were kept separate from each other. Aspirations and COC



H.M. Benham, M.P. McCollum, P. Nol et al.

processing were conducted in indoor, climate-controlled spaces
which varied depending on location of bison slaughter (e.g. auxil-
iary rooms in slaughterhouses or rented spaces).

2.2.2. In vitro maturation, fertilization, and culture

Within 1 h of aspiration, COCs from individual donors were
placed in 3 mL blood collection tubes without additives (Mono-
ject™, Covidien, Mansfield, MA, USA), containing 2.5 mL CSU
chemically defined medium for in vitro maturation of oocytes
(IVM) pre-equilibrated at 38.5 °C in 5% CO, and shipped by air
overnight [22]. The same equilibration conditions were used for all
embryo culture media . [IVM medium was supplemented as follows:
15 ng/mL NIDDK-0FSH-20, 1 pg/mL USDA-LH-B-5, 1 ug/mL estradiol
178, 50 ng/uL epidermal growth factor, and 0.1 mM cysteamine
[22]. On occasion, higher numbers of bison were sent to slaughter
than anticipated. During these times, COCs from multiple donors
were pooled for in vitro maturation if there were not enough ma-
terials in the field to allow for COCs from individual donors to be
matured separately. If pooled, COCs from donors of similar maturity
group and/or pregnancy status were combined when possible.
While oocytes from all females were counted, recorded, and
fertilized, females whose oocytes were pooled with unlike females
or had IVP rounds with missing data points were not included in
the analysis. A maximum of 50 COCs were matured in each tube for
23 h during transport in a portable incubator (MicroQ Technologies,
Scottsdale, AZ, USA). If the incubator arrived prior to the comple-
tion of the 23 h maturation period, tubes were uncapped and
transferred to a large box equilibration incubator in the laboratory.
Otherwise, oocytes were directly transferred from the IVM tubes,
along with no more than 20 pL IVM to a 4-well culture dish con-
taining 430 uL of equilibrated CSU chemically defined medium for
in vitro fertilization (FCDM)/well [22]. All of the oocytes from one
maturation tube were put into the same fertilization well (50 COCs/
well) and held in the equilibration incubator until sperm was
added.

Semen from YNP bison bulls was frozen in 20% egg yolk tris +8%
glycerol at ~60 million cells/mL [23]. Motile sperm were isolated by
separating thawed semen through a 45/90 Percoll® gradient [24].
Post thaw progressive motility after separation ranged from 60 to
70% prior to use in IVF. Sperm were added to COCs at a final con-
centration of 0.5 x 10® sperm/mL, and co-incubated in a humidified
atmosphere of 5% CO; in air at 38.5 °C for 18 h. During the 5 y
period, semen from singles sires (n = 10 males) or pooled semen
from 2 bulls (n = 6 pools) were used for IVF, for approximately 35%
and 65% of fertilizations, respectively. Semen from all bulls had
been used successfully in our laboratory to generate bison IVP
embryos.

Following IVF, presumptive zygotes were mechanically stripped
of cumulus cells by gentle micropipetting using a STRIPPER® and
150 pm and 135 um stripper tips (Origio, CooperGenomics,
Denmark). Denuded zygotes were washed through a series of CSU
chemically defined medium for handling of early embryos (HCDM-
1) drops until wash medium was free of loose cumulus cells and
remaining spermatozoa [22]. Cleaned zygotes were placed into
wells containing 500 uL CSU chemically defined medium for
in vitro culture of early embryos (CDM-1) and cultured for 56 hin a
humidified atmosphere of 5% CO,, 5% 02, 90% N3 at 38.5 °C [22]. The
number of embryos per well ranged from 1 to 50. Embryo cleavage
was recorded after 56 h of culture. At this time, embryos containing
>4 blastomeres were placed in 500 uL CSU chemically defined
medium for in vitro culture of late embryos (CDM-2) + 5% FCS/well
and cultured for an additional 120 h in a humidified atmosphere of
5% CO3, 5% O3, 90% Ny at 38.5 °C [22]. The maximum number of
embryos per well was 30. Embryos were assessed for blastocyst
development on day 7 (96 h), 7.5 (108 h), and 8 (120 h) post
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insemination. Blastocysts were evaluated for stage and graded
morphologically in accordance with IETS guidelines [25]. All spent
CDM-2 media and degenerate embryos from the IVP process were
cultured for presence of Brucella abortus.

2.3. Embryo vitrification and warming

Grade 1 and 2 early blastocysts, blastocysts, and expanded
blastocysts were vitrified using a two-step equilibration process.
Vitrification solutions were prepared using a base of modified H1
medium (H1-Mod; H-CDM-1 + 20% FCS). Embryos were placed in
an equilibration solution (V1) of 1.5 M ethylene glycol in H1-Mod
for 5 min, followed by < 30 s in a vitrification solution (V2) of
7 M ethylene glycol, 0.6 M galactose, and 18% ficoll (w/v) in H1-Mod
[26]. Embryos were placed onto Cryotop® devices (Kitazato, Japan)
in <1 pL V2 and plunged into liquid nitrogen [26].

Prior to transfer into bison cows, embryos were warmed using a
4-step dilution with the following solutions:1 M galactose in H1-
Mod (W1), 0.5 M galactose in H1-Mod (W2), 0.25 M galactose in
H1-Mod (W3), and finally H1-Mod. First, embryos were plunged
directly into 1 mL of 38.5 °C W1 for 3 min. Embryos were then
moved in succession into 1 mL 38.5 °C W2, W3, and H1-Mod for
3 min each. After warming, embryos were incubated in CDM2+5%
FCS for <6 h prior to transfer to confirm viability and blastocoel re-
expansion. All embryos that were not warmed remain in cryo-
storage at Colorado State University and are effectively a biobank
of Yellowstone bison embryos.

2.4. Embryo washing

As the disease status of YNP bison donors was unknown,
appropriate embryo washing techniques per the IETS were used to
prevent transmission of pathogens from donor to recipient [13].
After warming and incubation prior to embryo transfer, all embryos
were passed through 10 sequential washes. Embryos were held in
the first wash which contained 0.25% trypsin in Ham’s F-12 me-
dium for 60 s. All subsequent washes were done in 1 mL of HCDM-
2. Embryos were moved between washes in 1—2 puL of fluid or less
resulting in a 1:1000 dilution of the embryo for each wash. This is a
more stringent wash than the required minimum dilution of 1:100
according to IETS standards to ensure that bacteria potentially
present on the zona pellucida (ZP) or in the surrounding fluid are
eliminated. The ZP is considered an efficient barrier to microor-
ganisms, so only embryos with an intact ZP were washed and
transferred [13].

2.5. Recipient synchronization and embryo transfer

Ten bison cow recipients housed on the Foothills Campus of
Colorado State University were synchronized for embryo transfer
during the breeding season of 2016. While embryos were produced
over multiple years, embryo transfers were only conducted in
August of 2016 because of the limited availability of bison cows in a
university research herd which was demonstrated to be
brucellosis-free through repeated testing over a minimum of 2
years and were proven mothers. Each female received an intra-
vaginal progesterone releasing device sixteen and a half days prior
to embryo transfer (EAZI-BREED™CIDR®, Zoetis,USA), and were
simultaneously administered 100 ug gonadotropin-releasing hor-
mone (GnRH) intramuscular (im) (Cystorelin®, Merial Ltd., Duluth,
GA). The CIDRs were removed 7 d later at which time animals
received 25 mg prostaglandin F-2-alpha (PG) im (Lutalyse®, Zoe-
tis,USA). Nine and a half days after CIDR removal and PG injection, 1
(n = 5 recipients) or 2 (n = 5 recipients) warmed embryos were
transferred to recipients with a palpable corpus luteum. The
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highest quality embryos as evaluated after thawing and a short
culture period (as indicated above) were transferred as single em-
bryos while lower quality embryos were paired for transfer to
maximize potential pregnancy rates. Only grade 1 and 2 embryos
were transferred as evaluated in accordance with IETS guidelines
[25]. While other synchronization methods used with bison have
been previously described, they require daily or frequent animal
handling and examination [27]. As all of our recipients are even-
tually released back onto the landscape where they may have
contact with the public, we try to handle them as little as possible.
The protocol used in this study only required the animals being
handled twice prior to embryo transfer. Recipient cows were
housed separately from males, and had no exposure to males prior
to or after embryo transfer and were not released from the facility
until the completion of this project. Recipients were not evaluated
for pregnancy status via palpation or ultrasound following embryo
transfer to minimize stress and handling. Rather, delivery dates
were estimated and visual cues (development of the udder,
swelling of vulva) were used to indicate pregnancy and impending
parturition.

2.6. Statistical analyses

COC recovery and donor parameters (maturity and pregnancy
status) were compared by unpaired Student’s t-test. Embryo
cleavage and blastocyst production percentages were compared to
donor parameters by 2-tailed Chi-square test. COC recovery rates
are expressed as a mean + SEM and cleavage and blastocyst pro-
duction percentages as a proportion. P-values of <0.05 were
considered significant. All statistics were performed using Graph-
Pad Prism® 7.0d (GraphPad Software, La Jolla, CA, USA).

3. Results

3.1. Effects of donor maturity on oocyte recovery and embryo
production

During the five-year sampling period, a total of 959 COCs from
49 juvenile heifers and 6544 COCs from 363 sexually mature cows
were collected and used for in vitro embryo production. The mean
number of COCs collected per animal was similar in juvenile and
mature females (P > 0.05; Table 1). For oocytes that were used in
the IVP analysis (as described), the proportion of COCs from juve-
nile bison that cleaved after IVF was lower than that for mature
bison; however, there were no differences in the proportions of
blastocysts per oocyte or blastocysts per cleaved embryo based on
donor maturity (Table 1).

Table 1

Development of in vitro produced (IVP) plains bison embryos produced from
cumulus oocyte complexes (COC) collected post mortem from juvenile (1.5-2.5y) or
sexually mature (>3 y) females. Blastocyst development per COC and per cleaved
embryo was calculated based on numbers of embryos on Day 8. Number of COC
collected presented as mean + SEM.

End point Juvenile Mature

Number of bison 49 363

Number of COC collected/donor 259 +2 2361

Cleaved embryos (%) 472/959 (49.2%)* 3621/6544 (55.3%)°

Blastocysts per COC (%)
Blastocysts per cleaved embryo (%)

79/959 (8.2%)
79/472 (16.7%)

547/6544 (8.4%)
547/3621 (15.1%)

b within rows, superscripts differ to indicate significance (P < 0.05, Chi-square test).
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3.2. Effects of donor pregnancy status on oocyte recovery and
embryo production

During the five year sampling period, a total of 2302 COCs from
119 non pregnant females and 6122 COCs from 352 pregnant fe-
males were collected and used for in vitro embryo production. The
mean number of COCs collected per animal was higher in non-
pregnant than in pregnant females (P < 0.05; Table 2). While the
proportion of COCs from pregnant bison that cleaved after IVF was
greater than that for non-pregnant bison (P < 0.05), there were no
significant differences in proportions of blastocyst development
per oocyte or per cleaved embryo based on donor pregnancy status
(P < 0.05; Table 2).

3.3. Live offspring produced from IVP embryos

All embryos warmed for embryo transfer were grade 1 or 2 and
a blastocyst or expanded blastocyst at the time of vitrification.
Following warming and a short culture, grades ranged from 1 to 3
(5 grade 1, 8 grade 2, and 2 grade 3). In May of 2017, a healthy fe-
male calf was born to a recipient cow that had received two grade 2
blastocysts, as evaluated post warming and culture, via embryo
transfer in August of 2016 (Fig. 1). At the time of vitrification these
two embryos were classified as a grade 1 blastocyst and a grade 2
blastocyst. Genetic testing was performed by Texas A&M University
to confirm that the heifer calf born was genetically unrelated to the
recipient cow, and indeed the result of embryo transfer. The genetic
dam of the calf was a pregnant mature bison cow that was har-
vested in the first months of 2016. Both the recipient cow and calf
tested negative for brucellosis 6 months post calving. In addition,
all spent media and degenerate embryos were culture negative for
Brucella abortus. Through this research, a biobank for YNP bison was
established containing more than 800 vitrified embryos that
remain in cryo-storage at Colorado State University.

4. Discussion

To our knowledge, this is the first study to report the birth of a
live calf after the transfer of IVP embryos derived from reproductive
material collected post mortem during the non-breeding season in
plains bison. We describe the success of our IVP system over a 5-
year period. Oocytes derived from both juvenile and mature fe-
males, as well as non-pregnant and pregnant females, can be used
successfully for blastocyst production. Pregnancy status had a small
negative impact on average COC recovered per female, possibly
because the large corpus luteum (CL) present on the ovary in
pregnant animals decreased surface area on the ovary for devel-
oping follicles to occupy. Neither pregnancy nor maturity status
impacted the overall number of blastocysts produced per recovered
COC. As is routinely conducted in cattle, these results demonstrate
that COCs recovered from post mortem ovaries can be effectively
used in an in vitro embryo production system, and the resulting
blastocysts vitrified for future embryo transfer. Based on these re-
sults, and considering the conservation and cultural value of the
Yellowstone bison population, it is important that reproductive
material continue to be collected from these genetically valuable
females during the annual prescribed winter cull.

Studies in cattle have similarly shown that there is no impact of
pregnancy status on IVP outcomes when oocytes are collected from
either transvaginal aspiration or from slaughterhouse ovaries [28].
These studies similarly reported a reduction in oocyte yield from
pregnant females due to restricted follicular growth on the ovary
supporting the CL [28]. In cattle, the acquisition of oocyte compe-
tence is achieved by 11 months of age, when oocytes derived from
calves exhibit embryo cleavage and blastocyst development similar
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Table 2

Development of in vitro produced (IVP) plains bison embryos produced from cumulus oocyte complexes (COC) collected post mortem
from either non pregnant or pregnant females. Blastocyst development per COC and per cleaved embryo was calculated based on numbers
of embryos on Day 8. Number of COC collected presented as mean + SEM.

End point Non Pregnant Pregnant

Number of bison 119 352

Number of COC collected/animal 26.9 +2° 224 +1°

Cleaved embryos (%) 1135/2302 (49.3%)° 3477/6122 (56.8%)"
Blastocysts per COC (%) 188/2302 (8.2%) 556/6122 (9.1%)
Blastocysts per cleaved embryo (%) 188/1135 (16.6%) 556/3477 (16.0%)

3 Within rows, superscripts differ to indicate significance (P < 0.05, Chi-square test).

i oo

Fig. 1. A healthy female calf (IVF1) was born in May 2017 to a recipient bison cow (pictured with the calf here) that received two grade 2 in vitro produced blastocysts at the time of
transfer. The genetic dam of the calf was a pregnant mature YNP bison cow that was harvested in winter of 2016. Both the recipient cow and calf tested negative for brucellosis 6
months post calving.
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to that of mature cows [29]. The nulliparous heifers used as donors
and classified as juveniles in our study were between the ages of
1.5—2.5 y, and no longer prepubescent. Although higher oocyte
yields can be achieved from younger donors, lower developmental
competence nullifies this increase and final blastocyst production
does not differ between heifers and mature cows [27,30]. Similarly,
while we did see reduced embryonic cleavage in embryos from
juvenile animals, blastocyst development per recovered oocyte did
not differ between juveniles and mature cows in this study.

Potential seasonal effects on oocyte quality are an important
consideration in this study because samples were collected during
the winter cull. Many atretic COCs were discarded during collection.
Throughout the anovulatory season, small antral follicles can
persist on the ovary for a long period of time, possibly increasing
the number of recovered oocytes that are atretic or have have poor
developmental potential [30]. A seasonal effect on in vitro fertil-
ization success has been described in wood bison, inferring reduced
oocyte competence during the non-breeding season [18]. In
contrast to the current study, these oocytes were collected from
live, super-stimulated, non-pregnant bison. Approximately 80% of
the YNP bison collected post mortem in the nonbreeding season
were pregnant and the oocytes had not been exposed to FSH, unlike
the wood bison study [19]. While there may be a seasonal
component to the overall lower blastocyst development reported
here, viable blastocysts were generated and cryopreserved each
year of collection. Overall cleavage and blastocyst production rates
(respectively) per year were as follows: 2014 — 61%, 8.4%;
2015—-51%, 10%; 2016—55%, 12%; 2017—-50%, 7%; 2018—59%, 10%.
Because of high variability in numbers of animals, collection con-
ditions, technicians conducting the work, and other factors from
year to year, data were not analyzed according to year. Low blas-
tocyst development could be due in part to the difficulty in man-
aging unpredictable field conditions during the time of ovary and
oocyte collection, particularly adverse weather conditions during
the winter in Montana. It is also worth noting that these bison are
wild and subject to the stresses of low forage availability in the
winter; indeed, this is the reason for their migration out of YNP
[31]. As a result, carcasses evaluated from bison harvested from
YNP in winter have been found to be in negative energy and protein
balance, with juvenile animals more strongly impacted than adults
[31].

While the production of a live calf from an IVF-produced em-
bryo is a promising success and proof of concept, continued work in
this area is needed to improve pregnancy rates. Species-specific
techniques, particularly in nondomestic species, take substantial
time and resources to develop, often with a low probability of
producing live offspring from newly developed protocols [32]. The
success of assisted reproductive technology (ART) in these species
has relied heavily on work done in domestic species of similar taxa
[33]. In this case, research with domestic cattle has provided a
tremendous body of work from which to draw technical informa-
tion. While cattle protocols have provided a strong foundation for
bison-specific protocols, the low blastocyst development and
pregnancy rates described here suggest that further research is
needed to improve these techniques for use in bison. In particular,
bison embryos have higher cytoplasmic lipid content than cattle
embryos, reducing cryotolerance [16,34—36]. Developing cryo-
preservation and embryo warming methods that are more effective
with lipid rich embryos and increase post thaw embryo viability is
critical to improve IVP embryo pregnancy outcomes. It is also
possible that culturing embryos post warming had an impact on
pregnancy rates. In these experiments culturing was done post-
thaw to confirm viability of embryos so that only the best em-
bryos were transferred to recipients. The recipient herd size avail-
able for this study limited the number of embryo transfers that
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could be performed. Many more transfers will be needed to eval-
uate the potential pregnancy rates from embryos generated in this
manner; however, the transfers performed here provide proof of
principle that this technology can result in live offspring.

As aresult of this research, we established a biobank of over 800
embryos for Yellowstone bison. Biobanks or genetic resource banks
are an important component of modern conservation strategies. A
large number of genetically diverse individuals can be preserved as
gametes or embryos, or even tissue, in a small amount of space. This
material can be easily transported without the stress of moving
animals, and the potential effective population size could be much
larger than what exists in current conservation herds [32]. Trans-
locating animals is stressful and potentially dangerous for bison,
can increase risk of disease transmission, and disrupt a herd’s social
order [37]. These technologies are not intended to replace natural
breeding for sustainable bison populations (in situ conservation),
but instead the value lies in being able to circumvent disease, and
preserve and/or recover valuable genetics that can be introduced
over time into captive conservation herds (ex situ conservation) to
maintain genetic diversity and fitness [38,39]. For bison from Yel-
lowstone National park, the ability to preserve genetics while
mitigating the risks of brucellosis transmission is particularly
valuable because of their high conservation and cultural value.

In conclusion, during a 5-year period we were able to harvest
and preserve large quantities of material from the genetically
valuable Yellowstone bison population without affecting the wild
population. Here we provide a method that can be followed when
valuable bison die or go to slaughter, which may be useful for other
valuable ungulates. We have demonstrated that there is value in
collecting oocytes from females across age categories and preg-
nancy status and those oocytes, collected in the non-breeding
season, can result in viable embryos that may lead to live
offspring. This work has allowed us to establish a biobank of em-
bryos for Yellowstone bison that continues to grow annually.
Continued research is needed to increase the efficiency of the ART
techniques described here to realize their full potential in
conserving bison.
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