150 research outputs found

    Repeated high doses of avermectins cause prolonged sterilisation, but do not kill, Onchocerca ochengi adult worms in African cattle

    Get PDF
    BACKGROUND: Ivermectin (Mectizan™, Merck and CO. Inc.) is being widely used in the control of human onchocerciasis (Onchoverca volvulus) because of its potent effect on microfilariae. Human studies have suggested that, at the standard dose of 150 μg/kg an annual treatment schedule of ivermectin reversibly interferes with female worm fertility but is not macrofilaricidal. Because of the importance of determining whether ivermectin could be macrofilaricidal, the efficacy of high and prolonged doses of ivermectin and a related avermectin, doramectin, were investigated in cattle infected with O. ochengi. METHODS: Drugs with potential macrofilaricidal activity, were screened for the treatment of human onchocerciasis, using natural infections of O. ochengi in African cattle. Three groups of 3 cows were either treated at monthly intervals (7 treatments) with ivermectin (Ivomec(®), Merck and Co. Inc.) at 500 μg/kg or doramectin (Dectamax(®), Pfizer) at 500 μg/kg or not treated as controls. Intradermal nodules were removed at 6 monthly intervals and adult worms were examined for signs of drug activity. RESULTS: There was no significant decline in nodule diameter, the motility of male and female worms, nor in male and female viability as determined by the ability to reduce tetrazolium, compared with controls, at any time up to 24 months from the start of treatments (mpt). Embryogenesis, however, was abrogated by treatment, which was seen as an accumulation of dead and dying intra-uterine microfilariae (mf) persisting for up to 18 mpt. Skin mf densities in treated animals had fallen to zero by <3 mpt, but by 18 mpt small numbers of mf were found in the skin of some treated animals and a few female worms were starting to produce multi-cellular embryonic stages. Follow-up of the doramectin treated group at 36 mpt showed that mf densities had still only regained a small proportion of their pre-treatment levels. CONCLUSION: These results have important implications for onchocerciasis control in the field. They suggest that ivermectin given at repeated high does may sterilise O. volvulus female worms for prolonged periods but is unlikely to kill them. This supports the view that control programmes may need to continue treatments with ivermectin for a period of decades and highlights the need to urgently identify new marcofiliaricidal compounds

    Serological Patterns of Brucellosis, Leptospirosis and Q Fever in Bos indicus Cattle in Cameroon

    Get PDF
    Brucellosis, leptospirosis and Q fever are important infections of livestock causing a range of clinical conditions including abortions and reduced fertility. In addition, they are all important zoonotic infections infecting those who work with livestock and those who consume livestock related products such as milk, producing non-specific symptoms including fever, that are often misdiagnosed and that can lead to severe chronic disease. This study used banked sera from the Adamawa Region of Cameroon to investigate the seroprevalences and distributions of seropositive animals and herds. A classical statistical and a multi-level prevalence modelling approach were compared. The unbiased estimates were 20% of herds were seropositive for Brucella spp. compared to 95% for Leptospira spp. and 68% for Q fever. The within-herd seroprevalences were 16%, 35% and 39% respectively. There was statistical evidence of clustering of seropositive brucellosis and Q fever herds. The modelling approach has the major advantage that estimates of seroprevalence can be adjusted for the sensitivity and specificity of the diagnostic test used and the multi-level structure of the sampling. The study found a low seroprevalence of brucellosis in the Adamawa Region compared to a high proportion of leptospirosis and Q fever seropositive herds. This represents a high risk to the human population as well as potentially having a major impact on animal health and productivity in the region

    UMF-078: A modified flubendazole with potent macrofilaricidal activity against Onchocerca ochengi in African cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human onchocerciasis or river blindness, caused by the filarial nematode <it>Onchocerca volvulus</it>, is currently controlled using the microfilaricidal drug, ivermectin. However, ivermectin does not kill adult <it>O. volvulus</it>, and in areas with less than 65% ivermectin coverage of the population, there is no effect on transmission. Therefore, there is still a need for a macrofilaricidal drug. Using the bovine filarial nematode <it>O. ochengi </it>(found naturally in African cattle), the macrofilaricidal efficacy of the modified flubendazole, UMF-078, was investigated.</p> <p>Methods</p> <p>Groups of 3 cows were treated with one of the following regimens: (a) a single dose of UMF-078 at 150 mg/kg intramuscularly (im), (b) 50 mg/kg im, (c) 150 mg/kg intraabomasally (ia), (d) 50 mg/kg ia, or (e) not treated (controls).</p> <p>Results</p> <p>After treatment at 150 mg/kg im, nodule diameter, worm motility and worm viability (as measured by metabolic reduction of tetrazolium to formazan) declined significantly compared with pre-treatment values and concurrent controls. There was abrogation of embryogenesis and death of all adult worms by 24 weeks post-treatment (pt). Animals treated at 50 mg/kg im showed a decline in nodule diameter together with abrogated reproduction, reduced motility, and lower metabolic activity in isolated worms, culminating in approximately 50% worm mortality by 52 weeks pt. Worms removed from animals treated ia were not killed, but exhibited a temporary embryotoxic effect which had waned by 12 weeks pt in the 50 mg/kg ia group and by 24 weeks pt in the 150 mg/kg ia group. These differences could be explained by the different absorption rates and elimination half-lives for each dose and route of administration.</p> <p>Conclusion</p> <p>Although we did not observe any signs of mammalian toxicity in this trial with a single dose, other studies have raised concerns regarding neuro- and genotoxicity. Consequently, further evaluation of this compound has been suspended. Nonetheless, these results validate the molecular target of the benzimidazoles as a promising lead for rational design of macrofilaricidal drugs.</p

    A rabies lesson improves rabies knowledge amongst primary school children in Zomba, Malawi

    Get PDF
    <div><p>Rabies is an important neglected disease, which kills around 59,000 people a year. Over a third of these deaths are in children less than 15 years of age. Almost all human rabies deaths in Africa and Asia are due to bites from infected dogs. Despite the high efficacy of current rabies vaccines, awareness about rabies preventive healthcare is often low in endemic areas. It is therefore common for educational initiatives to be conducted in conjunction with other rabies control activities such as mass dog vaccination, however there are few examples where the efficacy of education activities has been assessed. Here, primary school children in Zomba, Malawi, were given a lesson on rabies biology and preventive healthcare. Subsequently, a mass dog vaccination programme was delivered in the same region. Knowledge and attitudes towards rabies were assessed by a questionnaire before the lesson, immediately after the lesson and 9 weeks later to assess the impact the lesson had on school children’s knowledge and attitudes. This assessment was also undertaken in children who were exposed to the mass dog vaccination programme but did not receive the lesson. Knowledge of rabies and how to be safe around dogs increased following the lesson (both p<0.001), and knowledge remained higher than baseline 9 weeks after the lesson (both p<0.001). Knowledge of rabies and how to be safe around dogs was greater amongst school children who had received the lesson compared to school children who had not received the lesson, but had been exposed to a rabies vaccination campaign in their community (both p<0.001) indicating that the lesson itself was critical in improving knowledge. In summary, we have shown that a short, focused classroom-based lesson on rabies can improve short and medium-term rabies knowledge and attitudes of Malawian schoolchildren.</p></div

    Evaluation of three 3ABC ELISAs for foot-and-mouth disease non-structural antibodies using latent class analysis

    Get PDF
    BACKGROUND: Foot-and-mouth disease (FMD) is a highly contagious viral disease of even-toed ungulates. Serological diagnosis/surveillance of FMD presents several problems as there are seven serotypes worldwide and in the event of vaccination it may be necessary to be able to identify FMD infected/exposed animals irrespective of their vaccination status. The recent development of non-structural 3ABC protein (NSP) ELISA tests has greatly advanced sero-diagnosis/surveillance as these tests detect exposure to live virus for any of the seven serotypes of FMD, even in vaccinated populations. This paper analyses the performance of three NSP tests using a Bayesian formulation of the Hui-Walter latent class model to estimate test sensitivity and specificity in the absence of a "gold-standard" test, using sera from a well described cattle population in Cameroon with endemic FMD. RESULTS: The analysis found a high sensitivity and specificity for both the Danish C-ELISA and the World Organisation for Animal Health (O.I.E.) recommended South American I-ELISA. However, the commercial CHEKIT kit, though having high specificity, has very low sensitivity. The results of the study suggests that for NSP ELISAs, latent class models are a useful alternative to the traditional approach of evaluating diagnostic tests against a known "gold-standard" test as imperfections in the "gold-standard" may give biased test characteristics. CONCLUSION: This study demonstrates that when applied to naturally infected zebu cattle managed under extensive rangeland conditions, the FMD ELISAs may not give the same parameter estimates as those generated from experimental studies. The Bayesian approach allows for full posterior probabilities and capture of the uncertainty in the estimates. The implications of an imperfect specificity are important for the design and interpretation of sero-surveillance data and may result in excessive numbers of false positives in low prevalence situations unless a follow-up confirmatory test such as the enzyme linked immunoelectrotransfer blot (EITB) is used

    Developing digital contact tracing tailored to haulage in East Africa to support COVID-19 surveillance: a protocol

    Get PDF
    International audienceIntroduction At the peak of Uganda’s first wave of SARS-CoV-2 in May 2020, one in three COVID-19 cases was linked to the haulage sector. This triggered a mandatory requirement for a negative PCR test result at all ports of entry and exit, resulting in significant delays as haulage drivers had to wait for 24–48 hours for results, which severely crippled the regional supply chain. To support public health and economic recovery, we aim to develop and test a mobile phone-based digital contact tracing (DCT) tool that both augments conventional contact tracing and also increases its speed and efficiency. Methods and analysis To test the DCT tool, we will use a stratified sample of haulage driver journeys, stratified by route type (regional and local journeys). We will include at least 65% of the haulage driver journeys ~83 200 on the network through Uganda. This allows us to capture variations in user demographics and socioeconomic characteristics that could influence the use and adoption of the DCT tool. The developed DCT tool will include a mobile application and web interface to collate and intelligently process data, whose output will support decision-making, resource allocation and feed mathematical models that predict epidemic waves. The main expected result will be an open source-tested DCT tool tailored to haulage use in developing countries. This study will inform the safe deployment of DCT technologies needed for combatting pandemics in low-income countries. Ethics and dissemination This work has received ethics approval from the School of Public Health Higher Degrees, Research and Ethics Committee at Makerere University and The Uganda National Council for Science and Technology. This work will be disseminated through peer-reviewed publications, our websites https://project-thea.org/ and Github for the open source code https://github.com/project-thea/

    Latent class evaluation of the performance of serological tests for exposure to Brucella spp. in cattle, sheep, and goats in Tanzania

    Get PDF
    Background: Brucellosis is a neglected zoonosis endemic in many countries, including regions of sub-Saharan Africa. Evaluated diagnostic tools for the detection of exposure to Brucella spp. are important for disease surveillance and guiding prevention and control activities. Methods and findings: Bayesian latent class analysis was used to evaluate performance of the Rose Bengal plate test (RBT) and a competitive ELISA (cELISA) in detecting Brucella spp. exposure at the individual animal-level for cattle, sheep, and goats in Tanzania. Median posterior estimates of RBT sensitivity were: 0.779 (95% Bayesian credibility interval (BCI): 0.570–0.894), 0.893 (0.636–0.989), and 0.807 (0.575–0.966), and for cELISA were: 0.623 (0.443–0.790), 0.409 (0.241–0.644), and 0.561 (0.376–0.713), for cattle, sheep, and goats, respectively. Sensitivity BCIs were wide, with the widest for cELISA in sheep. RBT and cELISA median posterior estimates of specificity were high across species models: RBT ranged between 0.989 (0.980–0.998) and 0.995 (0.985–0.999), and cELISA between 0.984 (0.974–0.995) and 0.996 (0.988–1). Each species model generated seroprevalence estimates for two livestock subpopulations, pastoralist and non-pastoralist. Pastoralist seroprevalence estimates were: 0.063 (0.045–0.090), 0.033 (0.018–0.049), and 0.051 (0.034–0.076), for cattle, sheep, and goats, respectively. Non-pastoralist seroprevalence estimates were below 0.01 for all species models. Series and parallel diagnostic approaches were evaluated. Parallel outperformed a series approach. Median posterior estimates for parallel testing were ≥0.920 (0.760–0.986) for sensitivity and ≥0.973 (0.955–0.992) for specificity, for all species models. Conclusions: Our findings indicate that Brucella spp. surveillance in Tanzania using RBT and cELISA in parallel at the animal-level would give high test performance. There is a need to evaluate strategies for implementing parallel testing at the herd- and flock-level. Our findings can assist in generating robust Brucella spp. exposure estimates for livestock in Tanzania and wider sub-Saharan Africa. The adoption of locally evaluated robust diagnostic tests in setting-specific surveillance is an important step towards brucellosis prevention and control

    Bringing together emerging and endemic zoonoses surveillance: shared challenges and a common solution

    Get PDF
    Early detection of disease outbreaks in human and animal populations is crucial to the effective surveillance of emerging infectious diseases. However, there are marked geographical disparities in capacity for early detection of outbreaks, which limit the effectiveness of global surveillance strategies. Linking surveillance approaches for emerging and neglected endemic zoonoses, with a renewed focus on existing disease problems in developing countries, has the potential to overcome several limitations and to achieve additional health benefits. Poor reporting is a major constraint to the surveillance of both emerging and endemic zoonoses, and several important barriers to reporting can be identified: (i) a lack of tangible benefits when reports are made; (ii) a lack of capacity to enforce regulations; (iii) poor communication among communities, institutions and sectors; and (iv) complexities of the international regulatory environment. Redirecting surveillance efforts to focus on endemic zoonoses in developing countries offers a pragmatic approach that overcomes some of these barriers and provides support in regions where surveillance capacity is currently weakest. In addition, this approach addresses immediate health and development problems, and provides an equitable and sustainable mechanism for building the culture of surveillance and the core capacities that are needed for all zoonotic pathogens, including emerging disease threats

    Accuracy of Herdsmen Reporting versus Serologic Testing for Estimating Foot-and-Mouth Disease Prevalence

    Get PDF
    Herdsman-reported disease prevalence is widely used in veterinary epidemiologic studies, especially for diseases with visible external lesions; however, the accuracy of such reports is rarely validated. Thus, we used latent class analysis in a Bayesian framework to compare sensitivity and specificity of herdsman reporting with virus neutralization testing and use of 3 nonstructural protein ELISAs for estimates of foot-and-mouth disease (FMD) prevalence on the Adamawa plateau of Cameroon in 2000. Herdsman-reported estimates in this FMD-endemic area were comparable to those obtained from serologic testing. To harness to this cost-effective resource of monitoring emerging infectious diseases, we suggest that estimates of the sensitivity and specificity of herdsmen reporting should be done in parallel with serologic surveys of other animal diseases.Fil: Morgan, Kenton L.. University of Liverpool; Reino UnidoFil: Handel, Ian G.. University of Edinburgh; Reino UnidoFil: Tanya, Vincent N.. Institute of Agricultural Research for Development; Camerún. Ministry of Scientific Research and Innovation; CamerúnFil: Hamman, Saidou M.. Institute of Agricultural Research for Development; CamerúnFil: Nfon, Charles. Institute of Agricultural Research for Development; CamerúnFil: Bergmann, Ingrid Evelyn. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencias y Tecnología "Dr. Cesar Milstein"; Argentina. Pan American Foot and Mouth Disease Center; BrasilFil: Malirat, Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencias y Tecnología "Dr. Cesar Milstein"; Argentina. Pan American Foot and Mouth Disease Center; BrasilFil: Sorensen, Karl J.. Danish Veterinary Institute for Virus Research; DinamarcaFil: Bronsvoort, Barend M de C,. University of Edinburgh; Reino Unid
    corecore