14 research outputs found

    The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir.

    Get PDF
    The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors

    Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure–activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity

    Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure–activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity

    Synthesis and properties of oligonucleotides containing 2,4-dihydroxycyclohexyl nucleosides

    No full text
    Cyclohexyl nucleosides with an adenine and uracil base have been synthesized from 2-azidocyclohexane1,5-diol. The obtained racemic nucleosides were resolved using (R)-O-methylmandelic acid. Short oligonucleotides were synthesized using phorphoramidite chemistry. However, these oligonucleotides do not show self-hybridization, and duplexes are less stable than those of ribopyranosyl-(4' -> 2')-oligonucleotides.status: publishe

    Identification of fungicidal 2,6-disubstituted quinolines with Candida antibiofilm activity

    No full text
    We identified two subseries of 2,6-disubstituted quinolines, consisting of 6-amide and 6-urea derivatives, which are characterized by fungicidal activity against Candida albicans with minimal fungicidal concentration (MFC) < 15 ÎĽM. The 6-amide derivatives displayed the highest fungicidal activity against C. albicans, in particular compounds 737, 742 and 744 characterized by MFC values of 6.25 - 12.5 ÎĽM. Compounds 737 and 742 of this series displayed fungicidal activity against the emerging pathogen Candida glabrata (MFC < 50 ÎĽM). The 6-amide derivatives 737, 738, 742, and 744 and the 6-urea derivatives 798, 803, 804 and 807 could eradicate C. albicans biofilms. We found that the 6-urea derivatives 798, 804, and 807 induced accumulation of endogenous reactive oxygen species in Candida albicans biofilms.status: publishe

    Identification of Fungicidal 2,6-Disubstituted Quinolines with Activity against Candida Biofilms

    No full text
    We have identified two subseries of 2,6-disubstituted quinolines, consisting of 6-amide and 6-urea derivatives, which are characterized by fungicidal activity against Candida albicans with minimal fungicidal concentration (MFC) values &lt; 15 µM. The 6-amide derivatives displayed the highest fungicidal activity against C. albicans, in particular compounds 1, 5 and 6 characterized by MFC values of 6.25–12.5 µM. Compounds 1 and 5 of this series displayed fungicidal activity against the emerging pathogen Candida glabrata (MFC &lt; 50 µM). The 6-amide derivatives 1, 2, 5, and 6 and the 6-urea derivatives 10, 12, 13 and 15 could also eradicate C. albicans biofilms. We found that the 6-urea derivatives 10, 13, and 15 induced accumulation of endogenous reactive oxygen species in Candida albicans biofilms
    corecore