7 research outputs found

    A molecular investigation of the novel gene underlying autosomal dominant retinitis pigmentosa in a South African family

    Get PDF
    The inherited retinal degenerative disorders are a common cause of severe visual handicap in the W estem world. Retinitis pigmentosa (RP) is a group of retinopathies in which a primary feature is a progressive loss of photoreceptor and retinal pigment epithelium function. Over the last decade, investigations into the patho-physiology of RP have identified numerous disease-causing genes and loci (for a current listing refer to the web site http://www.sph.uth.tmc.edu/Retnet/). A study of a South African family with an autosomal dominant form of RP (adRP) forms the basis of this dissertation. In this family, comprising 44 individuals, the first manifestation of visual disturbance is usually evident between 20 and 30 years of age. Subsequently, another South African adRP family, consisting of 25 members, was also incorporated into this investigation. Genetic linkage analysis facilitated the mapping of the disease phenotype in the two South African adRP families to a 10 cM interval on chromosome 17q22. This novel locus, designated RP17, is the eighth identified for adRP. Haplotype construction in the two kindreds, in conjunction with multipoint analyses subsequently fine mapped RP17 to a 1 cM region between microsatellite markers D17S1604 and D17S948. Although the two families are from ethnically diverse population groups, they share the same disease-associated haplotype spanning 12 cM, which suggests that the disorder may be caused by the same pathogenic mutation in the same gene. The positional cloning approach was utilised in an endeavour to identify the RP17 gene and an attempt was made to construct a physical map of the 1 cM critical region. A contig consisting of seven yeast artificial chromosome (YAC) clones was assembled using sequence-tagged-site (STS) content mapping. In order to close a gap in the YAC contig, a bacterial artificial chromosome (BAC) library was screened and the vectorette PCR technique was used to verify overlapping sequences. This contig should provide a useful tool for the purpose of isolating genes or transcription units within the RP17 critical interval. In this regard, purified YAC DNA was isolated using pulsed-field gel electrophoresis and the cDNA selection technique was employed to generate a transcription map. This approach was applied to YAC 75Ic12 using a foetal brain cDNA library, and two rounds of selection were performed to create a sub-library for enriched cDNAs derived from this clone. Screening for the presence of contaminating sequences in the 480 transformants revealed that (i) approximately 7% of the selected clones contain COT-1 DNA and (ii) none of the clones were contaminated with yeast AB1380 DNA. Ten randomly chosen clones were sequenced and subjected to BLASTN analysis, which revealed the presence of a 23 bp contaminant, known genes as well as novel transcripts. In order to optimise efforts to isolate the adRP gene, four positional candidates residing on 17q were screened for evidence implicating them in the adRP phenotype in the two 17q22-linked families. The genes investigated were: PDEG (gamma subunit of rod phosphodiesterase), TIMP2 (tissue inhibitor of metalloproteinases-2), PKCA (protein kinase C alpha) and retinal fascin. These candidates were chosen on the basis of (i) mapping to 17q, (ii) expression in the retina and/or (iii) potential involvement in the rod phototransduction pathway. Recombination events between the adRP locus and a single strand conformation polymorphism (SSCP) in PDEG, and a restriction fragment length polymorphism (RFLP) in TIMP2 provided evidence for the exclusion of these candidate genes. A novel SSCP detected in the promoter region of retinal fascin was genotyped in the two adRP families and showed a lack of co-segregation with the disease locus. Furthermore, direct DNA sequencing of the coding regions as well as the promoter region of retinal fascin in RP affected family members did not reveal any pathogenic mutations. In addition, data is provided which suggests that PKCA does not reside on any of the YACs and BACs encompassing the RP17 critical interval. This gene is therefore unlikely to be responsible for the adRP phenotype in the two RP17-linked families. Ultimately, the work reported in this thesis may contribute to the body of knowledge on inherited retinal degenerative disorders. Moreover, this investigation should provide the basis for further study of the aetiology of RP in all families linked to the RP17 locus on chromosome 17q22. The immediate application of these molecular findings is the potential for pre-symptomatic testing of at-risk members from the two adRP kindreds

    The role of genetics in racial categorisation of humans

    Get PDF
    CITATION: Bardien-Kruger, S. & Muller-Nedebock, A. 2020. The role of genetics in racial categorisation of humans, in Jansen, J. & Walters, C. (eds). 2020. Fault lines : a primer on race, science and society. Stellenbosch: SUN PReSS, doi:10.18820/9781928480495/01.The original publication is available at https://africansunmedia.store.it.si/zaOnly very recently in the history of modern humans have we learned how to read the stories hidden in our DNA. The ability to read and interpret DNA has revealed that many things are not as they are perceived to be. For instance, physical features between two people may be strikingly different and therefore be taken to mean that the individuals are fundamentally different, when in fact the DNA of any two humans is almost identical (99.9% the same) on a genetic level. Given the physical differences apparent between populations, much research has gone into studying what makes them different. This type of research, no matter how well intentioned, has led to the pseudoscientific arguments used to justify movements such as the slave trade, the eugenics movement and apartheid in South Africa. Scientists at Stellenbosch University have also played a significant role in highlighting the ‘racial’ differences in the South African population. One such study is the nowretracted Sport Science article.1 In this study, the authors, albeit unwittingly, reinforce racial stereotyping by concluding that so‑called ‘coloured’ women in South Africa have lower cognitive functioning when compared to American age-standardised norms, and that this is due to exposure to a variety of factors with known negative effects on cognitive function. In an attempt to shed some light on the inaccuracies of the assumptions on which this article is based, this chapter will provide some background to racial categorisation from a genetic perspective. It will start with basic concepts in genetics and then expand into some of the more complex concepts and theories supporting the fact that there is no genetic basis for race in humans.Publisher's versio

    Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease: Evidence from the COURAGE-PD Consortium

    Get PDF
    International audienceBackground and Objectives Considerable heterogeneity exists in the literature concerning genetic determinants of the age at onset (AAO) of Parkinson disease (PD), which could be attributed to a lack of well-powered replication cohorts. The previous largest genome-wide association studies (GWAS) identified SNCA and TMEM175 loci on chromosome (Chr) 4 with a significant influence on the AAO of PD; these have not been independently replicated. This study aims to conduct a meta-analysis of GWAS of PD AAO and validate previously observed findings in worldwide populations. Methods A meta-analysis was performed on PD AAO GWAS of 30 populations of predominantly European ancestry from the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease (COURAGE-PD) Consortium. This was followed by combining our study with the largest publicly available European ancestry dataset compiled by the International Parkinson Disease Genomics Consortium (IPDGC). Results The COURAGE-PD Consortium included a cohort of 8,535 patients with PD (91.9%: Europeans and 9.1%: East Asians). The average AAO in the COURAGE-PD dataset was 58.9 years (SD = 11.6), with an underrepresentation of females (40.2%). The heritability estimate for AAO in COURAGE-PD was 0.083 (SE = 0.057). None of the loci reached genome-wide significance (p < 5 × 10-8). Nevertheless, the COURAGE-PD dataset confirmed the role of the previously published TMEM175 variant as a genetic determinant of the AAO of PD with Bonferroni-corrected nominal levels of significance (p < 0.025): (rs34311866: β(SE)COURAGE = 0.477(0.203), pCOURAGE = 0.0185). The subsequent meta-analysis of COURAGE-PD and IPDGC datasets (Ntotal = 25,950) led to the identification of 2 genome-wide significant association signals on Chr 4, including the previously reported SNCA locus (rs983361: β(SE)COURAGE+IPDGC = 0.720(0.122), pCOURAGE+IPDGC = 3.13 × 10-9) and a novel BST1 locus (rs4698412: β(SE)COURAGE+IPDGC = -0.526(0.096), pCOURAGE+IPDGC = 4.41 × 10-8). Discussion Our study further refines the genetic architecture of Chr 4 underlying the AAO of the PD phenotype through the identification of BST1 as a novel AAO PD locus. These findings open a new direction for the development of treatments to delay the onset of PD

    Dairy Intake and Parkinson&apos;s Disease: A Mendelian Randomization Study

    No full text
    Background Previous prospective studies highlighted dairy intake as a risk factor for Parkinson’s disease (PD), particularly in men. It is unclear whether this association is causal or explained by reverse causation or confounding. Objective The aim is to examine the association between genetically predicted dairy intake and PD using two-sample Mendelian randomization (MR). Methods We genotyped a well-established instrumental variable for dairy intake located in the lactase gene (rs4988235) within the Courage-PD consortium (23 studies; 9823 patients and 8376 controls of European ancestry). Results Based on a dominant model, there was an association between genetic predisposition toward higher dairy intake and PD (odds ratio [OR] per one serving per day = 1.70, 95% confidence interval = 1.12-2.60, P = 0.013) that was restricted to men (OR = 2.50 [1.37-4.56], P = 0.003; P-difference with women = 0.029). Conclusions Using MR, our findings provide further support for a causal relationship between dairy intake and higher PD risk, not biased by confounding or reverse causation. Further studies are needed to elucidate the underlying mechanisms. (c) 2022 International Parkinson and Movement Disorder Societ
    corecore