1,379 research outputs found

    Kinetics of hydrogen and zirconium interactions

    Get PDF
    Imperial Users onl

    On the robustness of acoustic black hole spectra

    Full text link
    We study the robustness of the spectrum emitted by an acoustic black hole by considering series of stationary flows that become either subsonic or supersonic, i.e. when the horizon disappears. We work with the superluminal Bogoliubov dispersion of Bose--Einstein condensates. We find that the spectrum remains remarkably Planckian until the horizon disappears. When the flow is everywhere supersonic, new pair creation channels open. This will be the subject of a forthcoming work.Comment: 4 pages, 2 figure, jpconf.cls; to appear in the proceedings of the Spanish Relativity Meeting ERE201

    Superradiant scattering from a hydrodynamic vortex

    Full text link
    We show that sound waves scattered from a hydrodynamic vortex may be amplified. Such superradiant scattering follows from the physical analogy between spinning black holes and hydrodynamic vortices. However a sonic horizon analogous to the black hole event horizon does not exist unless the vortex possesses a central drain, which is challenging to produce experimentally. In the astrophysical domain, superradiance can occur even in the absence of an event horizon: we show that in the hydrodynamic analogue, a drain is not required and a vortex scatters sound superradiantly. Possible experimental realization in dilute gas Bose-Einstein condensates is discussed.Comment: 10 pages, 1 figur

    Analog black holes in flowing dielectrics

    Get PDF
    We show that a flowing dielectric medium with a linear response to an external electric field can be used to generate an analog geometry that has many of the formal properties of a Schwarzschild black hole for light rays, in spite of birefringence. We also discuss the possibility of generating these analog black holes in the laboratory.Comment: Revtex4 file, 7 pages, 4 eps figures, a few changes in presentation, some references added, conclusions unchange

    Acoustic horizons for axially and spherically symmetric fluid flow

    Full text link
    We investigate the formation of acoustic horizons for an inviscid fluid moving in a pipe in the case of stationary and axi-symmetric flow. We show that, differently from what is generally believed, the acoustic horizon forms in correspondence of either a local minimum or maximum of the flux tube cross-section. Similarly, the external potential is required to have either a maximum or a minimum at the horizon, so that the external force has to vanish there. Choosing a power-law equation of state for the fluid, PρnP\propto \rho^{n}, we solve the equations of the fluid dynamics and show that the two possibilities are realized respectively for n>1n>-1 and n<1n<-1. These results are extended also to the case of spherically symmetric flow.Comment: 6 pages, 3 figure

    Analogue Cosmological Particle Creation: Quantum Correlations in Expanding Bose Einstein Condensates

    Full text link
    We investigate the structure of quantum correlations in an expanding Bose Einstein Condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.Comment: Reference adde

    Effective geometry in Astrophysics

    Full text link
    The effective metric is introduced by means of two examples (non-linear electromagnetism and hydrodynamics),along with applications in Astrophysics. A sketch of the generality of the effect is also given.Comment: 9 pages, contributions for the proceedings of the First International Workshop on Astronomy and Relativistic Astrophysics (IWARA 2003), Olinda (Brazil

    Black hole lasers, a mode analysis

    Full text link
    We show that the black hole laser effect discovered by Corley & Jacobson should be described in terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of complex frequency modes which appear in pairs and which encode the laser effect. In addition, it contains real frequency modes that form a continuous set when space is infinite, and which are only elastically scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is small, our expressions differ from those given earlier. In particular, when the region between the horizons shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in electric fields, and we give the conditions to get this type of instability.Comment: 19 pages, 3 figures, main changes: new figure and new Sec.6 `conditions for having a laser effect', final version accepted in PR

    Actuarial Senescence In A Dimorphic Bird: Different Rates Of Ageing In Morphs With Discrete Reproductive Strategies

    Get PDF
    It is often hypothesized that intra-sexual competition accelerates actuarial senescence, or the increase in mortality rates with age. However, an alternative hypothesis is that parental investment is more important to determining senescence rates. We used a unique model system, the white-throated sparrow (Zonotrichia albicollis), to study variation in actuarial senescence. In this species, genetically determined morphs display discrete mating strategies and disassortative pairing, providing an excellent opportunity to test the predictions of the above hypotheses. Compared to tan-striped males, white-striped males are more polygynous and aggressive, and less parental. Tan-striped females receive less parental support, and invest more into parental care than white-striped females, which are also more aggressive. Thus, higher senescence rates in males and white-striped birds would support the intra-sexual competition hypothesis, whereas higher senescence rates in females and tan-striped birds would support the parental investment hypothesis. White-striped males showed the lowest rate of actuarial senescence. Tan-striped females had the highest senescence rate, and tan-striped males and white-striped females showed intermediate, relatively equal rates. Thus, results were inconsistent with sexual selection and competitive strategies increasing senescence rates, and instead indicate that senescence may be accelerated by female-biased parental care, and lessened by sharing of parental duties

    Emergent Horizons in the Laboratory

    Full text link
    The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and theoretical study (e.g., regarding the trans-Planckian problem) and possibly the experimental verification of "exotic" effects known from gravity and cosmology, such as Hawking radiation. Furthermore, it yields a unified description and better understanding of non-equilibrium phenomena in condensed matter systems and their universal features. By means of several examples including general fluid flows, expanding Bose-Einstein condensates, and dynamical quantum phase transitions, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.Comment: 7 pages, 4 figure
    corecore