The concept of a horizon known from general relativity describes the loss of
causal connection and can be applied to non-gravitational scenarios such as
out-of-equilibrium condensed-matter systems in the laboratory. This analogy
facilitates the identification and theoretical study (e.g., regarding the
trans-Planckian problem) and possibly the experimental verification of "exotic"
effects known from gravity and cosmology, such as Hawking radiation.
Furthermore, it yields a unified description and better understanding of
non-equilibrium phenomena in condensed matter systems and their universal
features. By means of several examples including general fluid flows, expanding
Bose-Einstein condensates, and dynamical quantum phase transitions, the
concepts of event, particle, and apparent horizons will be discussed together
with the resulting quantum effects.Comment: 7 pages, 4 figure