509 research outputs found

    A Process Calculus for Molecular Interaction Maps

    Full text link
    We present the MIM calculus, a modeling formalism with a strong biological basis, which provides biologically-meaningful operators for representing the interaction capabilities of molecular species. The operators of the calculus are inspired by the reaction symbols used in Molecular Interaction Maps (MIMs), a diagrammatic notation used by biologists. Models of the calculus can be easily derived from MIM diagrams, for which an unambiguous and executable interpretation is thus obtained. We give a formal definition of the syntax and semantics of the MIM calculus, and we study properties of the formalism. A case study is also presented to show the use of the calculus for modeling biomolecular networks.Comment: 15 pages; 8 figures; To be published on EPTCS, proceedings of MeCBIC 200

    A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins

    Get PDF
    Pacemaker (HCN) channels have a key role in the generation and modulation of spontaneous activity of sinoatrial node myocytes. Previous work has shown that compartmentation of HCN4 pacemaker channels within caveolae regulates important functions, but the molecular mechanism responsible is still unknown. HCN channels have a conserved caveolin-binding domain (CBD) composed of three aromatic amino acids at the N-terminus; we sought to evaluate the role of this CBD in channel-protein interaction by mutational analysis. We generated two HCN4 mutants with a disrupted CBD (Y259S, F262V) and two with conservative mutations (Y259F, F262Y). In CHO cells expressing endogenous caveolin-1 (cav-1), alteration of the CBD shifted channels activation to more positive potentials, slowed deactivation and made Y259S and F262V mutants insensitive to cholesterol depletion-induced caveolar disorganization. CBD alteration also caused a significant decrease of current density, due to a weaker HCN4-cav-1 interaction and accumulation of cytoplasmic channels. These effects were absent in mutants with a preserved CBD. In caveolin-1-free fibroblasts, HCN4 trafficking was impaired and current density reduced with all constructs; the activation curve of F262V was not altered relative to wt, and that of Y259S displayed only half the shift than in CHO cells. The conserved CBD present in all HCN isoforms mediates their functional interaction with caveolins. The elucidation of the molecular details of HCN4-cav-1 interaction can provide novel information to understand the basis of cardiac phenotypes associated with some forms of caveolinopathies

    Age-Related Changes in Cardiac Autonomic Modulation and Heart Rate Variability in Mice

    Get PDF
    Objective: The aim of this study was to assess age-related changes in cardiac autonomic modulation and heart rate variability (HRV) and their association with spontaneous and pharmacologically induced vulnerability to cardiac arrhythmias, to verify the translational relevance of mouse models for further in-depth evaluation of the link between autonomic changes and increased arrhythmic risk with advancing age. Methods: Heart rate (HR) and time- and frequency-domain indexes of HRV were calculated from Electrocardiogram (ECG) recordings in two groups of conscious mice of different ages (4 and 19 months old) (i) during daily undisturbed conditions, (ii) following peripheral β-adrenergic (atenolol), muscarinic (methylscopolamine), and β-adrenergic + muscarinic blockades, and (iii) following β-adrenergic (isoprenaline) stimulation. Vulnerability to arrhythmias was evaluated during daily undisturbed conditions and following β-adrenergic stimulation. Results: HRV analysis and HR responses to autonomic blockades revealed that 19-month-old mice had a lower vagal modulation of cardiac function compared with 4-month-old mice. This age-related autonomic effect was not reflected in changes in HR, since intrinsic HR was lower in 19-month-old compared with 4-month-old mice. Both time- and frequency-domain HRV indexes were reduced following muscarinic, but not β-adrenergic blockade in younger mice, and to a lesser extent in older mice, suggesting that HRV is largely modulated by vagal tone in mice. Finally, 19-month-old mice showed a larger vulnerability to both spontaneous and isoprenaline-induced arrhythmias. Conclusion: The present study combines HRV analysis and selective pharmacological autonomic blockades to document an age-related impairment in cardiac vagal modulation in mice which is consistent with the human condition. Given their short life span, mice could be further exploited as an aged model for studying the trajectory of vagal decline with advancing age using HRV measures, and the mechanisms underlying its association with proarrhythmic remodeling of the senescent heart

    Multiple verification in computational modeling of bone pathologies

    Full text link
    We introduce a model checking approach to diagnose the emerging of bone pathologies. The implementation of a new model of bone remodeling in PRISM has led to an interesting characterization of osteoporosis as a defective bone remodeling dynamics with respect to other bone pathologies. Our approach allows to derive three types of model checking-based diagnostic estimators. The first diagnostic measure focuses on the level of bone mineral density, which is currently used in medical practice. In addition, we have introduced a novel diagnostic estimator which uses the full patient clinical record, here simulated using the modeling framework. This estimator detects rapid (months) negative changes in bone mineral density. Independently of the actual bone mineral density, when the decrease occurs rapidly it is important to alarm the patient and monitor him/her more closely to detect insurgence of other bone co-morbidities. A third estimator takes into account the variance of the bone density, which could address the investigation of metabolic syndromes, diabetes and cancer. Our implementation could make use of different logical combinations of these statistical estimators and could incorporate other biomarkers for other systemic co-morbidities (for example diabetes and thalassemia). We are delighted to report that the combination of stochastic modeling with formal methods motivate new diagnostic framework for complex pathologies. In particular our approach takes into consideration important properties of biosystems such as multiscale and self-adaptiveness. The multi-diagnosis could be further expanded, inching towards the complexity of human diseases. Finally, we briefly introduce self-adaptiveness in formal methods which is a key property in the regulative mechanisms of biological systems and well known in other mathematical and engineering areas.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Process algebra modelling styles for biomolecular processes

    Get PDF
    We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed

    Comorbidities are Frequent in Patients with Gastroesophageal Reflux Disease in a Tertiary Health Care Hospital

    Get PDF
    INTRODUCTION: Several aspects of gastroesophageal reflux disease (GERD) have been studied, but the frequency of comorbidities is not yet fully understood. OBJECTIVES: To study the prevalence of GERD comorbidities in a tertiary care hospital. METHODS: We prospectively studied 670 consecutive adult patients from the outpatient department of our facility. A diagnosis was established using clinical, endoscopic and/or pHmetry-related findings. Each patient's medical file was reviewed with respect to the presence of other medical conditions and diagnoses. RESULTS: Of the 670 patients, 459 (68.6%) were female, and the mean age was 55.94 (17-80 years). We registered 316 patients (47.1%) with the erosive form of GERD and 354 patients (52.9%) with the non-erosive form. A total of 1,664 instances of comorbidities were recorded in 586 patients (87.5%), with the most common being arterial hypertension (21%), hypercholesterolemia (9%), obesity (9%), type II diabetes mellitus (5%) and depression (4%). Two or more comorbidities were present in 437 individuals (64.8%). The occurrence of comorbidities increased with age and was higher in patients with the non-erosive form of GERD. CONCLUSIONS: In a tertiary referral population, comorbidities were very common, and these may have worsened the already impaired health-related quality of life of these patients. Clinicians caring for GERD patients in this setting must be aware of the likelihood and nature of comorbid disorders and their impact on disease presentation and patient management

    Identification of the Molecular Site of Ivabradine Binding to HCN4 Channels

    Get PDF
    Ivabradine is a specific heart rate-reducing agent approved as a treatment of chronic stable angina. Its mode of action involves a selective and specific block of HCN channels, the molecular components of sinoatrial "funny" (f)-channels. Different studies suggest that the binding site of ivabradine is located in the inner vestibule of HCN channels, but the molecular details of ivabradine binding are unknown. We thus sought to investigate by mutagenesis and in silico analysis which residues of the HCN4 channel, the HCN isoform expressed in the sinoatrial node, are involved in the binding of ivabradine. Using homology modeling, we verified the presence of an inner cavity below the channel pore and identified residues lining the cavity; these residues were replaced with alanine (or valine) either alone or in combination, and WT and mutant channels were expressed in HEK293 cells. Comparison of the block efficiency of mutant vs WT channels, measured by patch-clamp, revealed that residues Y506, F509 and I510 are involved in ivabradine binding. For each mutant channel, docking simulations correctly explain the reduced block efficiency in terms of proportionally reduced affinity for ivabradine binding. In summary our study shows that ivabradine occupies a cavity below the channel pore, and identifies specific residues facing this cavity that interact and stabilize the ivabradine molecule. This study provides an interpretation of known properties of f/HCN4 channel block by ivabradine such as the "open channel block", the current-dependence of block and the property of "trapping" of drug molecules in the closed configuration
    • …
    corecore