456 research outputs found

    Therapeutic Options in Hereditary Optic Neuropathies

    Get PDF
    Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber’s Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations

    P-030 ACE2 receptor and its isoform short-ACE2 are expressed on human spermatozoa

    Get PDF
    STUDY QUESTION: Do human spermatozoa express angiotensin-converting enzyme 2 (ACE2) receptor? What would be its localization? SUMMARY ANSWER: Human spermatozoa express uniformly ACE2 on the sperm head and the flagellum. Moreover, the short-ACE2 isoform is concentrated on the post-acrosomal region and midpiece. WHAT IS KNOWN ALREADY: The Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection is generating important concerns regarding not only the possible consequences on the respiratory system, but also on other organs, including the reproductive system. ACE2 is considered the main point of entry for the SARS-CoV-2 within the cells through the binding with the spike protein on the virus surface. Furthermore, ACE2 is expressed in human testes cells including Leydig cells, Sertoli cells and spermatogonia. However, to date, the expression and location of ACE2 in mature human spermatozoa has not been investigated yet. STUDY DESIGN, SIZE, DURATION: This was an in vitro study for the evaluation of the expression and immune-localization of full-length ACE2 and its isoform, short-ACE2, in human spermatozoa. Thirthyfour non-immunized healthy normozoospermic volunteers were enrolled in the study. The study was conducted from May to December 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen samples were collected by masturbation from non-immunized healthy normozoospermic voluntaries. Motile sperm suspensions were obtained by swim-up procedure. The expression of ACE2 was assessed by Western-blot analysis, while the immune-localization of ACE2 was evaluated by immune-cytochemical analysis under confocal microscopy. Flow-cytometry experiments were also performed to assess the surface protein expression on a large number of cells. MAIN RESULTS AND THE ROLE OF CHANCE: The Western-blot analysis of sperm extracts demonstrated two specific bands, one of approximately 120 KDa, corresponding to the glycosylated full-length ACE2, and a second one of approximately 52 KDa, the molecular weight of the protein recently termed short-ACE2. The immune-cytochemical analysis showed a uniformly localization of full-length ACE2 along both the sperm head and the flagellum, whereas the short isoform was preferentially located in the post-acrosomal region of the sperm head and the midpiece. At the flow cytometer, semen samples displayed a wide between-subject variability both in the percentage of ACE2-positive spermatozoa and the density of protein surface expression. LIMITATIONS, REASONS FOR CAUTION: Further studies are needed to determine whether short-ACE2 is a cleavage product from the full-length protein or if it is originated during spermatogenesis. Moreover, the role and the interaction of ACE2 with SARS-CoV-2 in human spermatozoa should be clarified to evaluate the possible impact of the virus on sperm biology. WIDER IMPLICATIONS OF THE FINDINGS: Since mature spermatozoa are transcriptionally silent and SARS-CoV-2 is an RNA virus, it is unlikely that the virus could affect sperm biology by replicating itself. Nevertheless, the potential effects related to modifications of the sperm membrane or interaction with other receptors or specific proteins cannot be ruled out. TRIAL REGISTRATION NUMBER: not applicabl

    ACE2 Receptor and Its Isoform Short-ACE2 Are Expressed on Human Spermatozoa

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) is a protein widely expressed in numerous cell types, with different biological roles mainly related to the renin-angiotensin system. Recently, ACE2 has been in the spotlight due to its involvement in the SARS-CoV-2 entry into cells. There are no data available regarding the expression of ACE2 and its short-ACE2 isoform at the protein level on human spermatozoa. Here, protein expression was demonstrated by western blot and the percentage of sperm displaying surface ACE2 was assessed by flow cytometry. Immunocytochemistry assays showed that full-length ACE2 was mainly expressed in sperm midpiece, while short ACE2 was preferentially distributed on the equatorial and post-acrosomal region of the sperm head. To our knowledge, this is the first study demonstrating the expression of protein ACE2 on spermatozoa. Further studies are warranted to determine the role of ACE2 isoforms in male reproduction

    application of advanced process control techniques to a pusher type reheating furnace

    Get PDF
    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators' mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system

    Hearing dysfunction in a large family affected by dominant optic atrophy (OPA8-related DOA): A human model of hidden auditory neuropathy

    Get PDF
    Hidden auditory neuropathy is characterized by reduced performances in challenging auditory tasks with the preservation of hearing thresholds, resulting from diffuse loss of cochlear inner hair cell (IHC) synapses following primary degeneration of unmyelinated terminals of auditory fibers. We report the audiological and electrophysiological findings collected from 10 members (4 males, 6 females) of a large Italian family affected by dominant optic atrophy, associated with the OPA8 locus, who complained of difficulties in understanding speech in the presence of noise. The patients were pooled into two groups, one consisting of 4 young adults (19\u201350 years) with normal hearing thresholds, and the other made up of 6 patients of an older age (55\u201372 years) showing mild hearing loss. Speech perception scores were normal in the first group and decreased in the second. Otoacoustic emissions (OAEs) and cochlear microphonics (CMs) recordings were consistent with preservation of outer hair cell (OHC) function in all patients, whereas auditory brainstem responses (ABRs) showed attenuated amplitudes in the first group and severe abnormalities in the second. Middle ear acoustic reflexes had delayed peak latencies in all patients in comparison with normally hearing individuals. Transtympanic electrocochleography (ECochG) recordings in response to 0.1 ms clicks at intensities from 120 to 60 dB peak equivalent SPL showed a reduction in amplitude of both summating potential (SP) and compound action potential (CAP) together with delayed CAP peak latencies and prolonged CAP duration in all patients in comparison with a control group of 20 normally hearing individuals. These findings indicate that underlying the hearing impairment in OPA8 patients is hidden AN resulting from diffuse loss of IHCs synapses. At an early stage the functional alterations only consist of abnormalities of ABR and ECochG potentials with increased latencies of acoustic reflexes, whereas reduction in speech perception scores become apparent with progression of the disease. Central mechanisms increasing the cortical gain are likely to compensate for the reduction of cochlear input

    Nanotechnology-Assisted Cell Tracking

    Get PDF
    The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra-and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP–cell interaction. This review provides a detailed overview of the available technologies focusing on cell–NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health

    Immunotherapeutic efficacy of retargeted ohsvs designed for propagation in an ad hoc cell line

    Get PDF
    Our laboratory has pursued the generation of cancer‐specific oncolytic herpes simplex viruses (oHSVs) which ensure high efficacy while maintaining a high safety profile. Their blueprint included retargeting to a Tumor‐Associated Antigen, e.g., HER2, coupled to detargeting from natural receptors to avoid off‐target and off‐tumor infections and preservation of the full complement of unmodified viral genes. These oHSVs are “fully virulent in their target cancer cells”. The 3rd generation retargeted oHSVs carry two distinct retargeting moieties, which enable infection of a producer cell line and of the target cancer cells, respectively. They can be propagated in an ad hoc Vero cell derivative at about tenfold higher yields than 1st generation recombinants, and more effectively replicate in human cancer cell lines. The R‐335 and R‐337 prototypes were armed with murine IL‐12. Intratumorally‐administered R‐337 conferred almost complete protection from LLC‐ 1‐HER2 primary tumors, unleashed the tumor microenvironment immunosuppression, synergized with the checkpoint blockade and conferred long‐term vaccination against distant challenge tumors. In summary, the problem intrinsic to the propagation of retargeted oHSVs—which strictly require cells positive for targeted receptors—was solved in 3rd generation viruses. They are effective as immunotherapeutic agents against primary tumors and as antigen‐agnostic vaccines

    P-440 Impact of electrospun scaffold topology on the performance of in-vitro Folliculogenesis applied to preantral ovine follicles

    Get PDF
    Study question How to improve in-vitro Folliculogenesis (ivF) protocols to address the enlarged demand of fertility preservation? Summary answer Tissue engineering-based approach opens new frontiers for ivF improving 3D-technologies addressed to support immature-ovarian-follicle-growth to obtain an increased number of competent oocytes enrolled in Assisted-Reproductive-Technology. What is known already ivF is a promising Assisted-Reproductive-Technology (ART) for preserving and restoring fertility. This technology potentially reproduces the early stages of folliculogenesis and oogenesis in-vitro allowing to move a large amount of oocyte on individual basis towards the validated protocol of in-vitro maturation/in-vitro fertilization (IVM/IVF). The current availability of biocompatible-supporting materials offers the challenging opportunity to mimic the native organ stroma in order to better reproduce the 3D environmental conditions leading to synergic follicles-oocyte development in-vitro with the aim to improve the performance of ivF in translational large sized mammal models. Study design, size, duration The present research aimed to compare preantral (PA) follicles culture on two different typologies of scaffolds fabricated using PCL(poly(epsilon caprolactone)), respectively made with patterned and randomly aligned fibers (PCL-Patterned/PCL-Randomic) with a standardized-single-follicle scaffold-free-method (3D-oil), widely validated on ovine model (Cecconi et al., 2004). The culture outcomes are compared analyzing follicle/oocyte growth, percentage of antrum differentiation and the incidence of meiotic competence, by exposing ivF growing oocytes to IVM protocol. Participants/materials, setting, methods PA follicles (mean size diameter: 250±4ÎŒm), mechanically isolated from slaughterhoused lamb ovaries, were individually cultured on electrospun PCL scaffolds (patterned vs randomic) or using the 3D-oil method. ivF were cultured alphaMEM-Fetal Bovine Serum free medium (5% Knockout Serum Replacement) supplemented with 4 IU/mL of equine Chorionic Gonadotropin (Di Berardino et al., 2021). At the end of ivF (14-days) the fully-grown oocytes isolated from early-antral follicles were tested on IVM. Main results and the role of chance PCL-Patterned electrospun scaffolds were able to strongly support a synergic oocyte and follicular growth. The 3D culture on Patterned electrospun scaffold supported the highest viability of follicles (87.5% vs 63% under 3D-oil conditions). On the contrary, the highest incidence of degenerated follicles was observed in cultures performed using PCL-Randomic materials (55 vs 37% vs 12.5% for PCL-Randomic vs 3D-oil vs PCL-Patterned, respectively; p <0.0004). The greatest follicle diameter increment (74.7±1 vs 70±0.4 vs 60.9±2%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, respectively p <0.0007) and rate of antrum differentiation (87.5% vs 45% and vs 63%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, for both p <0.0001) were observed in PA ovine follicles cultured on PCL-Patterned scaffolds. Furthermore, PCL-Patterned electrospun scaffolds supported a complete functional development of the oocyte compartment. More in detail, the majority of fully grown oocytes isolated from early- antral follicles grown on PCL-Patterned materials reached the metaphase-II stage (MII 80%) at the end of IVM in comparison to the significant lower percentage in 3D-oil (MII 68%, p =0.04) and PCL-Randomic (MII 18%, p <0.0001) protocols, respectively. Limitations, reasons for caution - Wider implications of the findings Tissue engineering scaffold-based approach represents a valid strategy generating a multi-organ in-vitro system, where different compartments may cooperate generating the complexity of paracrine-mechanism controlling early-follicles outcomes. Scaffold topology is essential to control early-follicles development. Indeed, exclusively PCL-Patterned can preserve long-term follicle 3D-microarchitecture supporting in-vitro oogenesis up to a complete meiotic-competence-acquisition. Trial registration number not applicabl

    Genotype of Immunologically Hot or Cold Tumors Determines the Antitumor Immune Response and Efficacy by Fully Virulent Retargeted oHSV

    Get PDF
    We report on the efficacy of the non-attenuated HER2-retargeted oHSV named R-337 against the immunologically hot CT26-HER2 tumor, and an insight into the basis of the immune protection. Preliminarily, we conducted an RNA immune profiling and immune cell content characterization of CT26-HER2 tumor in comparison to the immunologically cold LLC1-HER2 tumor. CT26-HER2 tumor was implanted into HER2-transgenic BALB/c mice. Hallmarks of R-337 effects were the protection from primary tumor, long-term adaptive vaccination directed to both HER2 and CT26-wt cell neoantigens. The latter effect differentiated R-337 from OncoVEXGM-CSF. As to the basis of the immune protection, R-337 orchestrated several changes to the tumor immune profile, which cumulatively reversed the immunosuppression typical of this tumor (graphical abstract). Thus, Ido1 (inhibitor of T cell anticancer immunity) levels and T regulatory cell infiltration were decreased; Cd40 and Cd27 co-immunostimulatory markers were increased; the IFNÎł cascade was activated. Of note was the dampening of IFN-I response, which we attribute to the fact that R-337 is fully equipped with genes that contrast the host innate response. The IFN-I shut-down likely favored viral replication and the expression of the mIL-12 payload, which, in turn, boosted the antitumor response. The results call for a characterization of tumor immune markers to employ oncolytic herpesviruses more precisely

    Diffusion tensor imaging mapping of brain white matter pathology in mitochondrial optic neuropathies

    Get PDF
    BACKGROUND AND PURPOSE: Brain white matter is frequently affected in mitochondrial diseases; optic atrophy gene 1-autosomal dominant optic atrophy and Leber hereditary optic neuropathy are the most frequent mitochondrial monosymptomatic optic neuropathies. In this observational study, brain white matter microstructure was characterized by DTI in patients with optic atrophy gene 1-autosomal dominant optic atrophy and Leber hereditary optic neuropathy, in relation to clinical and genetic features. MATERIALS AND METHODS: Nineteen patients with optic atrophy gene 1-autosomal dominant optic atrophy and 17 with Leber hereditary optic neuropathy older than 18 years of age, all genetically diagnosed, and 19 healthy volunteers underwent DTI by using a 1.5T MR imaging scanner and neurologic and ophthalmologic assessments. Brain white matter DTI metrics were calculated for all participants, and, in patients, their correlations with genetics and clinical findings were calculated. RESULTS: Compared with controls, patients with optic atrophy gene 1-autosomal dominant optic atrophy had an increased mean diffusivity in 29.2% of voxels analyzed within major white matter tracts distributed throughout the brain, while fractional anisotropy was reduced in 30.3% of voxels. For patients with Leber hereditary optic neuropathy, the proportion of altered voxels was only 0.5% and 5.5%, respectively, of which half was found within the optic radiation and 3.5%, in the smaller acoustic radiation. In almost all regions, fractional anisotropy diminished with age in patients with optic atrophy gene 1-autosomal dominant optic atrophy and correlated with average retinal nerve fiber layer thickness in several areas. Mean diffusivity increased in those with a missense mutation. Patients with Leber hereditary optic neuropathy taking idebenone had slightly milder changes. CONCLUSIONS: Patients with Leber hereditary optic neuropathy had preferential involvement of the optic and acoustic radiations, consistent with trans-synaptic degeneration, whereas patients with optic atrophy gene 1-autosomal dominant optic atrophy presented with widespread involvement suggestive of a multisystemic, possibly a congenital/developmental, disorder. White matter changes in Leber hereditary optic neuropathy and optic atrophy gene 1-autosomal dominant optic atrophy may be exploitable as biomarkers. ABBREVIATIONS: DOA autosomal dominant optic atrophy; FA fractional anisotropy; LHON Leber hereditary optic neuropathy; MD mean diffusivity; OPA1 optic atrophy gene 1 ;O R optic radiation; RNFL retinal nerve fiber layer; TBSS tract-based spatial statistic
    • 

    corecore