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Simple Summary: The onco-immunotherapeutic viruses, among which stand the onco-immunothe-
rapeutic herpes simplex viruses, have gained renewed interest due to their ability to unlock the po-
tential of checkpoint inhibitors in preclinical and clinical settings. In prior decades, safety concerns
led to the generation of overall safe, partially or highly attenuated oncolytic viruses. Current focus
is on more efficacious onco-immunotherapeutic viruses with limited ability to cause off-tumor and
off-target infections and the capability to subvert the tumor microenvironment immunosuppression—
hence to potentiate checkpoint inhibitors. These viruses might serve as potential partners of T-
cell therapies.

Abstract: Our laboratory has pursued the generation of cancer-specific oncolytic herpes simplex
viruses (oHSVs) which ensure high efficacy while maintaining a high safety profile. Their blueprint
included retargeting to a Tumor-Associated Antigen, e.g., HER2, coupled to detargeting from natural
receptors to avoid off-target and off-tumor infections and preservation of the full complement of
unmodified viral genes. These oHSVs are “fully virulent in their target cancer cells”. The 3rd
generation retargeted oHSVs carry two distinct retargeting moieties, which enable infection of
a producer cell line and of the target cancer cells, respectively. They can be propagated in an ad
hoc Vero cell derivative at about tenfold higher yields than 1st generation recombinants, and more
effectively replicate in human cancer cell lines. The R-335 and R-337 prototypes were armed with
murine IL-12. Intratumorally-administered R-337 conferred almost complete protection from LLC-1-
HER2 primary tumors, unleashed the tumor microenvironment immunosuppression, synergized
with the checkpoint blockade and conferred long-term vaccination against distant challenge tumors.
In summary, the problem intrinsic to the propagation of retargeted oHSVs—which strictly require
cells positive for targeted receptors—was solved in 3rd generation viruses. They are effective as
immunotherapeutic agents against primary tumors and as antigen-agnostic vaccines.

Keywords: oncolytic virus; herpes simplex virus; retargeted virus; tropism retargeting; tumor;
immunotherapy; checkpoint inhibitor; vaccination; antigen-agnostic vaccination; HER2

1. Cancer-Selective Oncolytic Herpes Simplex Viruses and Synergism with Check
Point Blockade

Herpes simplex viruses (HSVs) were among the first viruses taken into consideration
as candidate oncolytic viruses (OVs) [1–4] and still rank high in the list of OVs in clinical
trials [5]. The early approaches to generate OVs, including oHSVs, were rather conservative.
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Safety was a major concern, probably because scientists wanted to avoid the problems
which characterized the initial approaches to gene therapy, and because of the frailty of
patients. Most of the OVs that entered the clinical trials were attenuated, or over-attenuated.
In reality, safety proved not to be a major clinical issue. oHSVs, and OVs in general, are
well tolerated in clinical applications with very limited description of serious adverse
effects [6,7]. However, the efficacy in humans did not keep up to the expectations raised by
animal experimentation. For most OVs, and particularly for oHSVs, attenuation has been
the prerequisite for cancer selectivity, and hence for safety. Cancer cells exhibit varying
defects in innate responses and weakly contrast viral replication. Attenuated viruses
exploit such defects to target cancers cells, which sustain the replication of both wt and
attenuated viruses, and to spare non-cancer cells, in which the replication of attenuated
viruses is contrasted, but not fully abolished, by the antiviral innate response. One such
example is the attenuation conferred by the deletion of the γ34.5 virulence gene [2–4]. Since
attenuation also weakens virus replication in cancer cells, additional modifications were
introduced in the ∆γ34.5 oHSVs to rescue replication and virulence. The α47 open reading
frame was deleted to augment antigen presentation. The deletion modified the expression
profile of the late US11 gene. Immunomodulatory genes were engineered in the viral
genome. This is essentially the genotype of the approved OncovexGM-CSF, also known as
T-VEC or Imlygic® [2,8].

The interest in OVs, including oHSVs, was boosted by check point inhibitors (CPIs) [9].
These molecules disable the breaks imposed by some tumors on the anti-cancer immune
machinery and unleash the T-cell response against tumors. In humans, CPIs are limited by
the fact that they target a restricted range of tumors—typically those with high mutational
load, high tumor-specific T-cell infiltration and low T-cell activity due to the checkpoint
brakes—and are effective only against a fraction of patients. The rationale for combining
oncolytic viruses, like OncovexGM-CSF, with checkpoint inhibitors is compelling [10–13].
OVs inflame tumors, overcome the tumor microenvironment (TME) immunosuppression,
and unlock the potential of checkpoint inhibitors across many cancer types. The underlying
mechanism rests on the direct oncolysis induced by virus replication and consequent
increase in both total and cancer-specific antigenic load in the TME, on the ability to recruit
the immune cells to TME and to induce the expression of pro-inflammatory molecules.
In turn, the latter activate immune effector cells and cause tumor inflammation. Given
the heterogeneity in cancer genotypes and phenotypes, it is foreseen that even more
complex combinations of immunomodulatory agents may be required to obtain consistent
and durable therapeutic responses against a broad spectrum of cancers [14,15]. oHSVs are
well equipped to do this job, since their large genome has space for extra genes. GM-CSF is
a potent pro-inflammatory cytokine, most frequently employed as a payload in oHSVs [5];
it targets mainly the myeloid lineage, activates the dendritic cells, and enhances anti-
cancer effects; it is present in OncovexGM-CSF. IL-12 (interleukin-12) [16] is another highly
effective pro-inflammatory cytokine transgenically expressed by OVs, since it orchestrates
the innate and the adaptive immune response against cancer and pathogens [17]. It is
present in the oHSV named M032, currently in clinical trial [18,19]. Additional payloads
recently engineered in oHSVs include the ligands to co-stimulatory immune receptors,
CPI or combinations thereof [20,21].

2. Strategies towards Cancer-Specific and Efficacious oHSVs

In recent years efforts were made to generate cancer-specific rather than cancer-
selective oHSVs. Such viruses gain safety from specificity, contain the entire set of viral
genes so that they counteract the antiviral innate response, replicate robustly in the tu-
mor cells, and are effective in releasing the immune suppression typical of cancers and
in reactivating tumor recognition by the immune system.
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2.1. Tropism Retargeting

The notion of tropism retargeting was pioneered by Glorioso and co-workers, and by
Roizman and Zhou, and has been reviewed [22–25]. It entails the genetic engineering of
a ligand to a selected cancer receptor into one of the viral glycoproteins that mediate HSV
entry into the cells, most frequently gD [24,26,27]. Crucial to this development has been
the elucidation of the molecular events that govern HSV entry. It requires four essential
glycoproteins, gD, gH, gL and gB, which are activated in a cascade fashion, and two major
alternative receptors HVEM (herpesvirus entry mediator) and nectin1 which interact with
gD and activate it; they serve as major tropism determinants. Thereafter, the receptor-
activated gD and additional integrin receptors activate the heterodimer gH/gL, and finally
gB. The latter executes the fusion between the virion envelope and the cell membranes—
plasma membranes or endocytic membranes [28–32]. The presence of cell surface receptors
is a requirement for HSV entry [33].

The strategy developed in our laboratory to generate cancer-specific oHSVs and
increase their efficacy entails (a) the retargeting of the virus tropism to Tumor-Associated
Antigens (TAAs), i.e., to molecules that are selectively present at cancer cell surfaces;
(b) the detargeting of the virus tropism from the natural receptors HVEM and nectin, to
avoid off-target and off-tumor infections. When combined, retargeting and detargeting
provide specificity and safety; (c) preservation of the full spectrum of viral genes, to enable
a robust anti-tumor response [26,27]. Since the retargeted oHSVs do not carry any genetic
modification in virulence or other genes, they are “fully virulent viruses in their target
cancer cells” (Figure 1). Clearly, the extent of cancer-specificity reflects the specificity of
the target to which the oHSVs are addressed. Some TAAs—such as EGFRVIII (epidermal
growth factor receptor Variant III), IL-13 Receptor 2-α and HER2 (human epidermal growth
factor receptor 2) are more specific than others. A further improvement was introduced
by Glorioso and coworkers through point mutations in gD that impair the binging of
neutralizing antibodies, and thus make the oHSV stealth to anti-HSV antibodies present
in the human population [34].

Bench and preclinical studies foresee the following advantages for the tropism re-
targeted oHSVs. In contrast to the ∆γ34.5 oHSVs that can replicate solely in cancer cells
that carry defects in certain pathways of the innate response and may potentially replicate
in non-cancerous cells defective in innate responses, the retargeted oHSVs infect cancer
cells irrespective of the status of their innate response and are designed to prevent off-target
infections. The extent of infections in tissues with low level expression of the targeted
receptors remains to be verified in humans. Moreover, once the retargeted oHSVs infect
the tumor cells, they are essentially wt-viruses, they blunt the cell innate response and
promote high viral replication [35–38]. Lastly, in the tumor bed, the retargeted oHSVs ex-
clusively infect the cancer cells, whereas the ∆γ34.5 and the attenuated viruses additionally
infect immune cells, with unclear effects on the global immune response.
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Figure 1. Schematic view of HSV tropism retargeting and immunotherapy induced by armed oHSVs. (A–D). (A) wt-HSV
infects normal tissues, i.e., its natural target cells through natural major receptors HVEM and nectin1 (blue). (B) 1st and
2nd generation tropism retargeted oHSVs infect cancer cells expressing the target Tumor Associated Antigen (TAA, violet)
and fails to infect its natural targets. The scFv to TAA which mediated the virus retargeting to cancer cells is engineered
in the following virion glycoproteins: gD (1st generation), either gB or gH (2nd generation). (C) 3rd generation tropism
retargeted oHSV, can infect both the cancer cells that express the target TAA (violet) and the producer cells that express
an artificial receptor (orange), and fails to infect its natural targets. (D) The IL-12-armed retargeted oHSV specifically infects
tumors cells, causes immunogenic cell death of cancer cells and elicits immuno-therapeutic response, that result in inhibition
of tumor growth, sensitization to checkpoint blockade and antigen-agnostic vaccination.

2.2. Transcriptional and Post-Transcriptional Retargeting Strategies

Additional strategies to attain cancer specificity and preserve viral virulence include
transcriptional retargeting—i.e., placing a critical viral gene under the control of a cancer-
specific promoter, post-transcriptional retargeting and combinations thereof [39]. Examples
include the control of the key γ34.5 virulence gene by a hybrid nestin enhancer-HSP68
minimal promoter which ensures expression of the HSV genome specifically in the nestin-
positive glioblastoma cells [40] and the insertion of miRNA target sequences specific for
selected tissues (e.g., brain, heart, or liver) to avoid off-tumor expression of key herpesviral
proteins like ICP4 (infected cell protein 4), ICP27, UL8, and γ34.5 [20]. Such approaches
have been elegantly reviewed recently [23] and are beyond the scope of current review.

3. Properties of the Tropism-Retargeted oHSVs Generated in Our Laboratory
3.1. Three Generations of Tropism Retargeted oHSVs

For heuristic reasons we divide the retargeted oHSVs generated in our laboratory into
three groups (Table 1). In all, the retargeting was achieved by insertion of a single chain
antibody (scFv) to the receptor of choice, while detargeting was achieved by deletion of
appropriate portions in gD [27,41] [WO2009144755] (Table 1).
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Table 1. 1st, 2nd and 3rd generation retargeted oHSV, genotypic modifications for retargeting and detargeting purposes.

Generation of
Recombinant

Name of
Recombinant

scFv for Retargeting
to Tumor Cells

Inserted

GCN4 Peptide for
Retargeting to Producer

Cells Inserted in

Detargeting
Strategy,

Deletions @ gD
Ref

1st

R-LM113
R-115
R-123

HER2 @ gD Absent ∆ aa 6–38 [21,27,42]

R-LM249 HER2 @ gD Absent ∆ aa 61–218 [41]

R-611 EGFR @ gD Absent ∆ aa 6–38 [42]

R-613 EGFRVIII @ gD Absent ∆ aa 6–38 [42]

R-593 PSMA @ gD Absent ∆ aa 6–38 [42]

2nd
R-803
R-809 HER2 @gH Absent No deletion, or ∆

aa 6–38 [43]

R-903
R-909 HER2 @ gB Absent No deletion, or ∆

aa 6–38 [44]

3rd

R-313,
R-315
R-317
R-319

HER2 @ gD @ gB ∆ aa 6–38 [46]

R-213 HER2 @ gD @ gH ∆ aa 6–38 [45]

R-87
R-89
R-97
R-99

R-99-2

HER2 @ gD @ gD Deletions, various [47]

R-321,
R-335
R-337

HER2 @ gD @ gB ∆ aa30 and aa38 [46]
this paper

The 1st generation recombinants carry the scFv in gD, in place of either aa 6-38 or
aa 61–218. Such deletions eliminate the portions in gD responsible for interactions with
HVEM and nectin1, and confer full detargeting. In different recombinants, the scFvs
were addressed alternatively to HER2 (human epithelial growth factor receptor 2), EGFR
(epithelial growth factor receptor), EGFRVIII (EGFR variant III) or PSMA (prostate specific
membrane antigen) [27,42] and WO2009144755.

The 2nd generation recombinants carried the scFv to HER2 or to EGFR in either gH or
gB. This recombinant group explored the possibility that glycoproteins essential for HSV
entry, other than gD, serve as vector for the scFv. They carry the ∆6–38 in gD [43,44] and
WO201612849.

The 3rd generation recombinants simultaneously carry two retargeting moieties.
The rationale is detailed below (see, paragraph 3.3). One moiety is the anti-HER2 scFv
inserted in gD for cancer cell retargeting. The other moiety is the GCN4 peptide engineered
alternatively in gD, gH or gB for retargeting to an ad hoc producer cell line. For detargeting
purposes, the 3rd generation recombinants contained one of the following deletions in gD:
aa 6–38, two single amino acids—∆D30 and ∆Y38, or deletions in the nectin binding site
encompassing aa 214–223 [44–47] [WO2017211941, WO2017211944, WO2017211945].

3.2. The Retargeted oHSVs are a Platform

TAAs constitutes a family of molecules, with varying degrees of cancer specificity.
Very often, the encoding genes are genetically amplified in cancer cells, such that the TAAs
are overexpressed in cancer cells, and poorly or not expressed in non-cancerous cells.
Many are located on the cell surface. Since each member of the family is expressed
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across several cancer types [48], a single retargeted oHSV can potentially be employed
against a number of different cancers. In most of our studies we selected HER2, expressed
and amplified in a number of cancers, including breast, ovary, stomach, lung and pan-
creas cancers and glioblastoma, and is a relevant target in cancer immunotherapy. Thus,
a HER2-retargeted oHSV can potentially be employed against a variety of indications.
Glorioso laboratory, as well as our additionally generated oHSVs retargeted to EGFR,
EpCAM, EGFRVIII specific for glioblastoma puntiforme, and PSMA, present in prostate
cancers [23,26,49–51]. The EGFRVIII recombinant was further improved by insertion of
a matrix metalloproteinase which enhanced intratumoral vector distribution and efficacy
in a glioblastoma model [52]. Essentially, the retargeted oHSVs are a platform and can
potentially be addressed to different TAAs. It is envisioned that the intensive molecular
profiling programs carried out worldwide may lead to the discovery of novel TAAs, even
more specific than the ones currently known.

3.3. Cultivation of Tropism-Retargeted oHSVs in Non-Cancerous Producer Cells

A critical feature of the retargeted oHSVs generated in our laboratory is that they
are strictly dependent on the targeted cancer receptor for infection, including infection
of the producer cells. Often, the target receptor is an oncogene, i.e., it contributes to
the oncogenic potential of the cancer cells. While the retargeted oHSVs can be readily
cultivated in human cancer cells lines positive for the targeted receptor, approval of clin-
ical grade virus production in cancer cells by competent authorities might likely imply
specific motivations. A goal in the design of the 3rd generation retargeted oHSVs was
to generate a non-cancerous producer cell line for the in vitro growth of the retargeted
oHSVs. To this end, as mentioned above, we designed recombinants that simultaneously
carry two retargeting moieties (Figures 1 and 2A). The scFv retargets HSV to the cancer
receptor (HER2, in our case). The second one consists of a small high affinity ligand (GCN4
peptide) engineered in one of the entry glycoproteins—gD, gH or gB (Figure 2A) [45–47].
The producer cell line is a Vero cell derivative, named Vero-GCN4R-HER2, which expresses
an artificial receptor for the GCN4 peptide, along with human HER2.

In subsequent sections of this review, we shall focus on the two most advanced
recombinants from the 3rd generation group, R-335 and R-337. They carry (i) the insertion
of the GCN4 peptide in gB between residues 81 and 82; (ii) the deletion of only two amino
acids in gD—D30 and Y38—for HVEM and nectin1 detargeting; (iii) the insertion in gD of
scFv to HER2 in place of Y38. R-335 and R-337 carry mIL-12 in the US1/US2 intergenic
region, a site that enables a high expression level. While R-335 carried the natural form of
mIL-12, made of p40 and p35 subunits, R-337 carried the fusion form, in which the two
subunits are held together by a linker to form a single peptide. In cultured cells, the fusion
form was produced at 50 to 100-fold higher amounts than the dimeric form and possibly
was more stable. R-335 and R-337 genotypes are depicted in Figure 2A. The properties of
OVs, and particularly oHSVs expressing IL-12 are reviewed in [53].

Preliminarily, we quantified the ability of the two recombinants to grow in Vero-
GCN4R-HER2 and in the human HER2-positive cancer cell line SK-OV-3. The yields of
R-335 and R-337 in Vero-GCN4R-HER2 are shown in Figure 2B, which also shows the yields
of R-LM5 (an essentially wt HSV carrying EGFP [27]) and of the 1st generation recombinant
R-115. R-335 and R-337 infect these cells through both the GCN4R and HER2 receptors,
whereas R-115 infects only through HER2. Figure 2C shows the fold-increase of the yields
relative to that of R-115. Two features emerged. R-335 and R-337 replicated to seven to
eight-fold higher yields than R-115. As expected, R-335 and R-337 replicated to fivefold
lower yields than R-LM5; this is a common feature for recombinant viruses and accounts
for different receptor usage, in that R-LM5 infection occurs through the simian orthologs of
the natural receptors nectin1 and HVEM, which ensure the best possible interaction for
HSV entry into the cells.
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Figure 2. Growth kinetics of 1st and 3rd generation HER2-retargeted oHSVs in cancerous and non-cancerous producer
cells. (A) Schematic representation of genomes of wt HSV named R-LM5 (carrying GFP), R-115 (1st generation), R-335 and
R-337 (3rd generation) retargeted oHSVs. Indicated are the genetic loci of gB, gD, the insertion site of mIL-12 in the US1 and
US2 intergenic locus. 1st and 3rd generation recombinant viruses carry the insertion of scFv anti-HER2 for the retargeting
to HER2-positive cells, and the deletion of indicated portions of gD for the detargeting from HSV-1 natural receptors
HVEM and nectin1. The 3rd generation R-335 and R-337 viruses carry the GCN4 peptide in gB between aa 81 and 82,
and were engineered as detailed in [17,54]. (B–E) Yields of the wt HSV named R-LM5 (carrying GFP), R-115, R-335 and
R-337 in VERO-GCN4R-HER2 (B,C) and in SK-OV-3 (D,E) cells at 24, 48 and 72 h after infection. Replicate cultures of each
cell line were infected with the indicated viruses at 0.1 PFU/cell as titrated in SK-OV-3 cell line. Progeny virus was titrated
in SK-OV-3 cells. In panels C and E, yields are expressed relative to that of R-115. The data represent the average of at least
five independent experiments ± SD. (F) Plaque size of the indicated viruses five days after infection. For each virus-infected
culture 20 plaque pictures were taken, expressed as arbitrary units and plotted ± SD. (B–F) Statistical significance was
calculated by One Way ANOVA test and expressed as * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001.

In our experience the highest yields for both wt-HSV and HER2-reatargeted oHSVs
are obtained in SK-OV-3. Figure 2D,E show that the wt R-LM5 grew somewhat better
in SK-OV-3 than in Vero-GCN4R-HER2 cells, as expected. The growth of R-335 and R-337
could not be differentiated from that of R-LM5 and was about three-fold higher than that of
R-115. In addition, R-335 and R-337 plaques in SK-OV-3 cells were doubled in size relative
to those from R-115, in agreement with the virus yields results (Figure 2F). The higher
replication of R-335 and R-337 relative to that of R-115 was surprising in that SK-OV-3 cells
lack the receptor for GCN4 peptide. We interpret these results to indicate that the smaller
deletion in gD improved the glycoprotein performance, and that the GCN-4 insertion in gB
somehow activated gB or a combination of these effects.

3.4. Safety Profile of Retargeted oHSVs

Safety of retargeted oHSVs rests on their specificity for cancer cells and on genetic
stability and is documented by the following lines of evidence. In vitro, both 1st and
3rd generation retargeted oHSVs infected almost exclusively the cancer cells positive for
the targeted receptor and failed to infect or infected very poorly receptor-negative cancer
cells and non-cancerous cells, unless they transgenically expressed the targeted receptor [27,
41]. In no cases did the infection of few cells in a culture of receptor-negative cells result
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in a virus that could be serially passaged. The viruses exhibit genetic stability in that they
have been passaged in cultures for several months (3rd generation) or years (1st generation),
without any change in retargeting/detargeting properties. In vivo, upon intratumoral
(i.t.) administration, the 1st generation R-115 was detectable only in the tumors, and not
in serum or other organs (Figure 3A) [55]. When administered intraperitoneally (i.p.),
the 1st generation oHSVs did not cause any pathological signs, including brain infections,
even at the highest amounts (2 × 109 PFU). Under the same conditions, the wt-HSV killed
all mice (Figure 3B) [41,56]. In vivo, upon intracranial administration, the 1st generation
R-LM113 virus did not infect the brains, whereas the wt-HSV readily did (Figure 3C) [57].
Altogether, the results support the notion that (i) that in vitro infection of human cells only
occurs at high level HER2 expression, and (ii) the HER2-retargeted oHSVs do not cause
detectable off-target infections in mice. A detailed analysis on bio-distribution to human
tissues, especially in tissues with low level HER2 expression, remains to be performed.

Figure 3. The retargeted oHSVs are safe in mice upon intraperitoneal, intratumoral or intracranial routes of administration.
(A) R-115 biodistribution to the indicated organs following four intratumoral injections (1 × 108 PFU/dose or vehicle),
started at d 10 after tumor implantation. Organs and tumors were explanted at d 26, and, after homogenization, the total
DNA was extracted. R-115 genome copy numbers were determined by qPCR in comparison with a standard curve obtained
with purified HSV DNA, and expressed as gc/100 ng of DNA or gc/100 µl blood. (B) Kaplan Meier survival curves
of the C57BL/6 mice intraperitoneally injected with 1 × 108 or 2 × 109 PFU of R-LM5 (wt HSV), R-LM113 and R-115
(1st generation) oHSVs. (C) Merged fluorescence and bright-field images of adult nonobese diabetic/severe combined
immunodeficient (NOD/SCID) mouse brains after injection with R-LM5 (1 × 105 PFU) or R-LM113 (3 × 105 PFU) viruses.
Viral spread is visualized by enhanced green fluorescent protein fluorescence. (A) Statistical significance was calculated
using the Log-rank (Mantel-Cox) test. Panels (A–C), reproduced with permission. ** = p-value < 0.01.

4. In Vivo Efficacy of Retargeted oHSVs in Immunocompetent Mouse Models
4.1. Efficacy against LLC-1-HER2 Primary Tumors

Early studies from our laboratory indicated that retargeted oHSVs are highly effective
in nude mice, a property which only accounted for direct oncolytic effects [41,56]. The key
question arose as to how effective the retargeted oHSVs are in immunocompetent mice,
in particular in eliciting the innate response to the virus, the innate and the adaptive
long-term immunity to the tumor. To address this question here we provide the first
description of the efficacy of R-335 and R-337 and review previously described efficacy data
on 1st generation recombinants R-LM113, R-115 and R-123. A list of the most significant
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preclinical studies carried out in our laboratory is reported in Table 2. As discussed
above, the HER2-retargeted oHSVs are strictly dependent on (human) HER2 to carry out
infection, a feature that required an ad hoc immunocompetent murine model. Preliminarily,
we screened a number of murine tumor cell lines and found that LLC-1 (Lewis lung
carcinoma-1) cells enabled the highest HSV replication [55]. The ad hoc model consists of
LLC-1 cells made transgenic for HER2 (LLC-1-HER2) and of the syngeneic C57Bl/6 mice
transgenic and tolerant (TG) to HER2. Mouse tolerance to HER2 was critical to prevent
that the immune response to the tumor was mainly driven by the allogeneic HER2 [55].
With respect to antitumor activity, the 1st generation R-115 protected 60% of mice, of
which 16% exhibited a complete response (CR) and 44% a partial response (PR) [55].
The experimental design in anti-tumor efficacy experiments is illustrated in Figure 4,
panel A. Briefly, mice were implanted with subcutaneous tumors; the recombinants were
administered intratumorally (i.t.) to well-developed tumors. The mice that survived
the primary tumor received a second challenge tumor, which was untreated. The R-335
and R-337 recombinants were administered i.t. to well-developed tumors as five injections
of 1 × 108 PFU each, every other day (Figure 4A). The antitumor activity of R-335 was
similar to that of R-115, while that of R-337 was higher. In particular, R-335 protected 60%
of mice, 30% of which exhibited a complete response (CR) (Figure 4B–E). R-337 protected
100% of the mice, 80% of which exhibited CR (Figure 4B–E). The Kaplan Meier survival
curve shows highly statically significant differences between each virus and the control,
and between the two viruses (Figure 4F). The superior efficacy R-337 relative to R-335
should be interpreted in light of the fact the only genotypic difference between the two
viruses resides in mIL-12, which is a heterodimer in R-335 and a fusion form in R-337.
The results clearly indicate that a significant contribution to the control of primary tumor
growth is immune mediated.
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Table 2. 1st and 3rd generation retargeted oHSVs. Summary of preclinical studies.

Name of
Recombinant

Payload

Preclinical Assays and Main Results

Ref
Tumor Mice Efficacy against Primary

Tumor

Efficacy against
Distant

Challenge Tumor

Modifications
to TME

Combo
with CPI

Route of
Administration

1st generation

R-LM249 None
Human
Ovary

SK-OV-3

Immune-
deficient

Very high protection.
Protection from

disseminated metastases.
NT NT NT

I.T.
I.P.

Carrier cells
[41,56,58]

R-LM113 None
Mouse lung

(LLC-1-
HER2)

Immune-
competent,

HER2-
tolerant

Complete response against
primary tumor in 30% mice

in early treatment.
High protection Low

modifications NT I.T. [55]

R-LM113 None

Human high
grade

glioma
AND

Murine high
grade

glioma

Immune-
deficient

AND
Immune-

competent

Doubling in survival time
AND

Doubling in survival time
NT NT NT I.C. [57,59]

R-115 mIL-12 LLC-1-
HER2

Immune-
competent,

HER2-
tolerant

Complete response against
primary tumor in 70% mice

in early treatment.
High protection

Infiltration by
immune cells.

Increased
cytokines

I.T. [55]

R-115 mIL-12

Murine high
grade

glioma
(HGG-
HER2)

Immune-
competent

Complete eradication
in 30% mice in late

treatment
High protection

Increased
infiltration by

CD4 CD8
I.C. [60]

R-123 mIL-12 +
mGM-CSF

LLC-1-
HER2

Immune-
competent,

HER2-
tolerant

Complete response against
primary tumor in 40% mice

in late treatment.
NT Full

protection
I.T.
I.V. [21]
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Table 2. Cont.

Name of
Recombinant

Payload

Preclinical Assays and Main Results

Ref
Tumor Mice Efficacy against Primary

Tumor

Efficacy against
Distant

Challenge Tumor

Modifications
to TME

Combo
with CPI

Route of
Administration

3rd generation

R-335 mIL-12 LLC-1-
HER2

Immune-
competent,

HER2-
tolerant

Complete response in 30%
mice in late treatment High protection NT Low poten-

tiation I.T. This
paper

R-337
mIL-12
fusion
protein

LLC-1-
HER2

Immune-
competent,

HER2-
tolerant

Complete response in 80%
mice in late treatment High protection

Increased
infiltration by
immune cells;

increased
expression of

cytokines

Potentiation I.T. This
paper

NT, not tested.
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Figure 4. Efficacy of R-335 and R-337 monotherapy on the growth of LLC-1-HER2 tumors. (A) Schedule of treatments.
The six-to-eight weeks old HER2-transgenic/tolerant (HER2-TG) C57BL/6 mice were subcutaneously implanted in the left
flank with 5 × 105 LLC-1-HER2 cells in 100 µL of PBS [55]. 10 d later, when the tumor volumes averaged 70–100 mm3, mice
received 5 intratumoral injections of R-335, R-337 (1 × 108 PFU per injection, diluted in 50 µL PBS) or vehicle (50 µL PBS), at 2–3
day intervals. At d 33, the mice which survived the primary tumor received a contralateral challenge LLC-1-HER2 tumor of 5
× 105 cell per mouse. Tumor volume was calculated using the formula: largest diameter x (smallest diameter) 2 × 0.5. Mice
were sacrificed when tumor volumes exceed 1000–2000 mm3, ulceration occurred, or animals exhibited distress or pain. (B–D)
Kinetics of tumor growth in mice treated with vehicle (B), R-335 (C) or R-337 (D). The numbers reported in each panel indicate
the numbers of mice which were completely cured from tumors (complete response, CR), or which showed a delay/reduction
in tumor growth (partial response, PR). The mice were scored PR when the tumor volume was <50% smaller than the mean
size of the tumors in the vehicle group. (E) Volumes of the primary tumors at d 21 after implantation. Black (vehicle), blue
(R-335) and red (R-337) circles. (F) Kaplan-Meier survival curves of the three groups of mice. (G,H) Kinetics of growth of
contralateral challenge tumor in naïve mice (G), and in the R-335 or R-337 (H) arms. (I) Immune response in splenocytes
harvested at sacrifice. To isolate splenocytes, spleens were smashed through a 70 µm cell strainer in PBS, red blood cells were
lysed with ACK buffer, and samples were resuspended in medium (RPMI 1640 containing 10% heat inactivated FBS, 1%
penicillin/streptomycin). Splenocytes (1 × 106 cell/well) were incubated with 1 × 105 LLC-1-HER2 or LLC-1 cells in 0.5 mL
medium, and cocultured for 48 h. The amount of secreted IFNγ (quantified by ELISA) was a measure of the splenic anti-LLC-1
and anti- LLC-1-HER2 immune response [55]. (J,K) Antibody reactivity in sera harvested at sacrifice to LLC-1-HER2 or LLC-1
cells (J), and to HSV-1-infected cells (K), as determined by cell enzyme-linked immunosorbent assay (CELISA).
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Wt-LLC-1 and LLC-1-HER2 single cell preparations were reacted with mouse serum, diluted 1:150 in flow cytometry buffer
(PBS + 2% FBS), in ice for 1 h, washed with flow cytometry buffer and incubated with anti-mouse PE (1:400). Data were
acquired on BD C6 Accuri. For CELISA assay, RS cells were infected with HSV-1 at 3 PFU/cell for 24 h, then they were
fixed with paraformaldehyde, reacted with mouse serum diluted 1:60, or with the anti-gD monoclonal antibody HD1
(green) diluted 1:400 (positive control), followed by anti-mouse peroxidase. Peroxidase substrate o-phenylenediamine
dihydrochloride was added and plates were read at 490 nm as detailed [55]. (F) Statistical significance was calculated by
the Log-rank (Mantel-Cox) test. (E,I–K) Statistical significance was calculated by means of the One Way ANOVA test and
expressed as * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001; **** = p-value < 0.0001. Color code: mice which
received Vehicle, R-335 or R-337 are indicated in black, blue or red, respectively.

4.2. Retargeted oHSVs Promote Antigen Agnostic Vaccination Effect against Distant Tumors

A notable property of R-115 is the long-term abscopal efficacy [55]. Mice which sur-
vived the primary tumor were fully protected from a distal tumor implanted at later times.
Essentially, R-115 vaccinated mice against a subsequent challenge tumor. Even the 3rd
generation R-335 and R-337 proved to be particularly effective. Of the mice described
in Figure 4C,D, those which survived the primary tumor received a challenge LLC-1-HER2
tumor 33 days later. All these mice were fully protected (Figure 4G,H). Inasmuch as
the mice did not receive any treatment after the implantation of the distant challenge tumor,
any protection seen against such tumors was immune-mediated.

The mice protected from distant tumors exhibited a T-cell immune response docu-
mented as splenocyte reactivity to tumor cells (Figure 4I), in agreement with similar finding
with R-115 [55]. In particular, the splenocytes from both R-335- and R-337-treated mice,
harvested at sacrifice, reacted strongly to LLC-1-HER2 cells, and weakly to LLC-1 cells
(Figure 4I). The antibody response reflected at large the T-cell response, in that the sera
from R-335- and R-337-treated mice carried antibodies to LLC-1-HER2 and, to a lesser
extent, to LLC-1 cells (Figure 4J). The extent of protection against distant wt-LLC-1 tumors
will be evaluated in detail in future studies. Current results argue that the intratumoral
treatment of LLC-1-HER2 tumors with R-335 or R-337 can elicit a protective response
also to wt-LLC-1 cell neoantigens. The mice sera showed seroconversion also to HSV-1
(Figure 4K), as expected.

4.3. Retargeted oHSVs Subvert TME Immunosuppression

The purpose of this series of experiments was to provide evidence that the long-term
distant protection was mediated by an immune response, documented as dramatic changes
to the immunosuppressive TME. In these experiments, mice were treated i.t. with the R-337,
and sacrificed a few days after the end of treatment, at a time when tumors were decreas-
ing in size (Figure 5A–C). Analyses were carried out on tumor infiltrating lymphocytes
and cytokines, on the reactivity of splenocytes and of serum antibodies to tumors cells,
with the aim to detect local and systemic modifications. In R-115-treatred mice, the major
modifications consisted in the tumor infiltration by CD4+, CD8+ and activated CD8+,
NK (natural killer) and activated NK, Tregs (T-regulatory), along with the reduction in in-
tratumoral CD11b+ leucocytes [55]. The immune landscape of LLC-1-HER2 TME is that
of an immunologically desert tumor, characterized by low infiltration from anti-tumor
immune subpopulations and low levels of immune activation markers, co-stimulatory
molecules and pro-inflammatory cytokines [61]. In essence, the host immune system is
unable to recognize and react against LLC-1 tumors. Figure 5D–K documents the modifica-
tions detected in R-337-treated mice. Worth noting are the increase in tumor infiltrating
leucocytes, specifically CD4+, CD8+ and activated CD8+, DCs, and NK and activated NK
cells. The CD11b-positive population, which includes the immunosuppressive myeloid
derived suppressor cells, was decreased (Figure 5L). FoxP3+ cells, which include the T-
regulatory cells, were also increased (Figure 5H), in agreement with previous reports [55].
Transcriptional analysis of the tumor specimens revealed an increase in IFNγ, IL-12 (most
of which likely expressed from the viral genome), CXCL11 chemokine and t-bet transcrip-
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tion factor (Figure 5M–Q), hallmarks of inflamed TME and polarization to activated Th1
cells. Analysis of the systemic effect was carried out on spleen samples. The modifications
were essentially similar to those detected in the tumor samples (Figure 5R–W), except
that the increase in NK cells was non statistically significant. The splenocyte reactivity
and the antibody response to LLC-1-HER2 cells were essentially similar to those detected
in mice sacrificed at about 100 days after primary tumor implantation (Figure 5X,Y). Al-
together, i.t.- administered R-337 elicited a strong systemic and intratumoral immune
response, and the inflammation of the LLC-1-HER2 TME.

Figure 5. Immune heating of TME and spleen modifications induced by intratumoral R-337 monotherapy. (A,B) Kinetics
of tumor growth in HER2-TG C57BL/6 mice treated with vehicle (A) or R-337 (B), according to the schedule reported
in Figure 4A. (C) Tumor volumes at d 24. Black (vehicle) and red (R-337) circles. (D–L) Immune cell populations in tumors.
Single cell suspensions were prepared from freshly isolated LLC1-HER2 tumors at sacrifice. Tumors were minced in small
pieces, digested with collagenase, passed through 70 µm cell strainer and rinsed with FACS buffer. For each sample,
2 × 106 cells were blocked with α-CD16/32 Ab (clone 93), and then reacted with the antibodies CD4-FITC (clone GK1.5),
CD8a-PE (clone 53-6.7), CD45-Percp-Cy7 (clone 30-F11), CD335-APC (clone 29A1.4), FoxP3-PE (clone 150d/e4), CD11b-FITC
(clone M1/70), CD11c-PE (clone N418) and CD69-PercP (clone H1-2F3). Data were acquired on BD C6 Accuri. CD4 (CD4+
cells), CD8 (CD8+ cells), NK (CD335+ cells) and myeloid cells (CD11b+ cells) were gated on CD45+ subpopulation.
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Activated (CD69+) CD8 and NK cells were gated on CD8+ and CD335+ subpopulations, respectively. DC cells
(CD11c+CD11b+) were gated on CD11b+ population. Tregs (FoxP3+CD4+) were gated on CD4+ population. (M–Q).
Expression profile of cytokines, immune related transcription factor and immune markers. Tumor homogenates (a few mgs)
were employed for total RNA purification and 1.2 µg of RNA was employed for the cDNA synthesis. Diluted cDNAs (1:4)
were assayed by real-time PCR with Taqman probes. The levels of expression were determined using the ∆∆Ct method,
normalized on the Rpl13a housekeeping gene and on the mean of the vehicle-treated group. (R–W) Immune cell populations
in spleens. Sample preparation and staining as described for tumors. (X) Immune response in splenocytes to LLC-1-HER2
and LLC-1 cells was quantified as IFNγ secretion in the culture medium. For the details, see Figure 4. (Y) Serum antibody
reactivity to LLC-1-HER2 and LLC-1 cells. For the details, see Figure 4C–Y Statistical significance was calculated by the t-test
and expressed as * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001; **** = p-value < 0.0001, ns = not significant.
Color code, mice treated with vehicle or R-337 are indicated in black or red, respectively.

4.4. The “Immune Heating” of the Tumor Predisposes to Combination Therapy

The distant long-term protection, along with the dramatic changes to TME induced
by R-337, suggested that the recombinant could render immunologically cold and CPI-
resistant tumors immunologically hot and possibly CPI-sensitive. LLC-1-HER2 tumors
recapitulate tumors that are completely insensitive to anti-PD-1 (compare Figure 6B with
Figure 4B), in agreement with the low immunogenicity of these tumors [61]. The experiment
documented in Figure 6 was designed to ascertain whether R-335 and R-337 synergize
with anti-PD-1. Mice were treated as in Figure 4, and additionally received anti-PD-1,
administered i.p. (see Figure 6, panel A). It can be seen that, when combined with anti-
PD-1 in a simultaneous regimen [62–65], R-335 displayed a tendency to increase efficacy
(Figure 6B–E). Thus, in mice treated with R-335 alone, CR and PR occurred in 31 and 25%
of mice, respectively, in agreement with data shown in Figure 4. In mice which received
the combination therapy, CR and PR occurred in 41 and 35% of mice, i.e., 76% mice were
protected, completely or partially. The Kaplan Meier survival curve is reported in Figure 6F.
The mice which survived the primary tumor were fully protected from a challenge distant
tumor (Figure 6G,H). The long-term protection was most likely based on the systemic
immune response, documented as splenocyte and antibody reactivities to LLC-1-HER2
and wt-LLC-1 cells (Figure 6I,J).

To evaluate the efficacy of R-337 in combination with anti-PD-1, we decreased the over-
all amount of virus from five injections of 1 × 108 PFU each to three injections of 0.3 ×
108 PFU each (in total, 0.9 × 108 vs 5 × 108) (Figure 6K). At this lower dosage, R-337
monotherapy induced CR in 36% mice and PR in 18%, with an overall response rate of
about 55%. In the combination arm, 80% of mice exhibited CR, and 10% exhibited PR
(Figure 6L–N). The difference between monotherapy and combination therapy was statisti-
cally significant with respect to tumor size (Figure 6O) and Kaplan Meier survival curve
(Figure 6P). The surviving mice were fully protected from a distant challenge made of
LLC-1-HER2 cells (Figure 6Q,R). At sacrifice, 80 days after primary tumor implantation,
the mice treated with the combination therapy showed a tendency to increased splenocyte
response (Figure 6S), and an increase in antibody response (Figure 6T). The results show
that the R-337 and anti-PD-1 combination therapy was highly effective and are consistent
with the view that the distant protection was immune-based.
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Figure 6. Efficacy of R-335 of R-337 in combination with anti-PD1 antibodies on the growth of LLC-1-HER2 tumors.
(A) Schedule of the treatments. The HER2-TG C57BL/6 mice were implanted with LLC-1-HER2 cells. At d 10 after implan-
tation, when tumors reached the average volume of 70–100 mm3, mice received 5 i.t. injections of R-335, or R-335 plus i.p.
injections of anti-PD-1, at 2–3 days intervals. The administration schedule of oHSV and anti-PD-1 treatments was according
to [62–65]. At d 44, the mice which survived the primary tumor received a contralateral challenge LLC-1-HER2 tumor.
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For the details, see Figure 4B–D Kinetics of tumor growth in mice treated with vehicle (B), R-335 alone (C), or R-335 plus
anti-PD-1 combination therapy (D). Figures in panels indicate the number of mice exhibiting complete response (CR) or
partial response (PR). (E) Volumes of the primary tumors at d 21 after implantation. Black (vehicle), blue (R-335) and
open blue (combination) circles. (F) Kaplan-Meier survival curves of the three groups of mice. (G–H) Growth kinetics of
contralateral challenge tumors in naïve mice (G), and in R-335 or combination arms (H). (I) Immune response in splenocytes
harvested at sacrifice. Splenocytes were incubated with LLC-1-HER2 or LLC-1 cells. Activation was quantified as IFNγ

secretion in the culture medium. (J) Serum antibody reactivity to LLC-1-HER2 or LLC-1 cells. (K) Schedule of the treatment
with R-337 with or without combination with anti-PD-1 antibodies. The HER2-TG C57BL/6 mice were implanted with
LLC-1-HER2 cells. At 10 d after tumor implantation, mice received 3 i.t injections of R-337 at 5 days interval, and, where
indicated, i.p. injections of anti-PD-1 antibodies, as detailed in the drawing. At d 35, the mice which survived the primary
tumor received a contralateral challenge LLC-1-HER2 tumor. (L–T) Kinetics of tumor growth (L–N), tumor size at d 21 (O),
Kaplan Meier survival curves (P), growth curves of challenge tumors (Q–R), immune response in splenocytes (S), antibody
reactivity to LLC-1-HER2 or LLC-1 cells (T). (F,P) Statistical significance was calculated by the Log-rank (Mantel-Cox) test.
(E, I, J, O, S, T) Statistical significance was calculated by means of the ANOVA test and expressed as * = p-value < 0.05;
** = p-value < 0.01; *** = p-value < 0.001; **** = p-value < 0.0001. Color codes: mice treated with vehicle, R-335, R-337 are
indicated in black, blue or red, respectively. Full circles and continuous lines, monotherapies. Open circles and dotted lines,
combination therapies.

4.5. Retargeted oHSVs Eradicate High Grade Gliomas (HGG) in Preclinical Models

Glioblastomas (GBMs) are among the tumors with highest resistance to surgery,
chemo- and radiotherapy, and highest mortality rate. Essentially, the natural history
of these tumors has not changed in the last 50 years. GBMs have been the subject of
intense interest as targets of OV-based therapy, and especially of oHSVs, in part because of
the natural tropism of HSV for the nervous system. Human GBMs express TAAs, such as
HER-2, EGFRvIII, IL-13R2α, EGFR and others.

We provided proof of principle that GBM can potentially be treated with retargeted
oHSVs. In initial studies, Malatesta and his group developed a high-grade glioma (HGG)
model, consisting of human GBM cells genetically modified to express HER2 and ortho-
topically implanted in the brains of immunodeficient mice [57]. When the 1st generation
unarmed R-LM113 was administered i.t. as single dose, it more than doubled the survival
time, and fully protected about 20% of the mice [57]. These findings confirmed and ex-
tended similar finding on EGFRvIII-expressing GBM cells [49]. Subsequently, the Malatesta
group developed a genetically engineered HGG preclinical model in immunocompetent
syngeneic BALB/c mice. The tumors cells were derived upon overexpression of platelet-
derived growth factor B (PDGF-B). This model exhibits a gene expression profile typical of
oligodendrocyte precursor cells and histopathological features typical of GBM, thus reca-
pitulating GBM [66]. The cancer cells were made transgenic for HER2, and orthotopically
implanted in the brains of BALB/c mice. A single dose of R-115 administered intracranially
(i.c.) fully protected 30% of mice. At sacrifice, the protected mice did not harbor any
remnant of tumor. Interestingly, as we observed with the LLC-1-HER2-bearing mice, all
the R-115-treated mice which survived the primary tumor exhibited a long-term distant
protection and developed immune response to the tumor. This consisted of a systemic IgG
response, as well as of a local response, whereby tumors became infiltrated with CD4+ and
CD8+ lymphocytes [60].

4.6. Efficacy of Systemically Administered Retargeted oHSVs

A major aim in the OV field has been the development of agents suitable for systemic
treatment of metastatic cancer. Given the natural history of the viruses from which the dif-
ferent OVs are derived, some OVs are better suited than others for systemic administration.
In addition to unspecific uptake by parenchymal organs—a barrier for all OVs, the OVs
based on some human viruses, like HSV, human Adenoviruses, measles viruses need to
contrast the prior immunity that exists in humans. The question arose whether retargeted
oHSVs are sufficiently robust for systemic delivery. In early studies we found that a 1st
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generation retargeted oHSV, named R-LM249, administered by weekly i.p. injections,
significantly reduced brain and ovarian metastases by HER2-positive human tumors in im-
munodeficient mice carrying multiorgan tumors [56]. R-LM249 could also be delivered
by means of mesenchymal carrier cells and decreased metastatic lung burden [58]. Most
recently, in a immunocompetent mouse model that takes advantage of the immunothera-
peutic effect, a 1st generation oHSV payloaded with IL-12 and GM-CSF, and administered
in combination with anti-PD1, was capable of strongly decreasing the burden of lung
tumor nodules induced by intravenous administration of LLC-1-HER2 cells, a model
of metastatic lung disease [21]. Remarkably, the tumor growth inhibition occurred also
in HSV-preimmunized mice [21]. The finding provides evidence that appropriately armed
retargeted oHSVs in combination with checkpoint blockade can be a suitable agent for
systemic administration.

4.7. Patents

Herpes Simplex Virus (HSV) with modified tropism, uses and process of preparation
thereof—WO2009144755 (divisional patent EP2700405)

Retargeted herpesvirus with a glycoprotein H fusion—WO201612849
Herpesvirus with Modified Glycoprotein B—WO2017211941
Herpesvirus with Modified Glycoprotein D—WO2017211944
Herpesvirus with Modified Glycoprotein H For Propagation In A Cell—WO2017211945

5. Conclusions

The main features to emerge from current review on retargeted oHSVs are as follows.
A major argument that may be raised against tropism retargeted oHSVs is that they

are not anti-pan-tumor agents. This argument does not take into account that any selected
TAA is expressed across a number of cancer types, and therefore any retargeted oHSV
can potentially be employed against a variety of indications. Moreover, clinical practice
indicates that, due to cancer heterogeneity, the therapeutic effects of potentially pan-tumor
OVs is not uniformly exerted on any type of tumor, or of cancer patient. The current trend
in anti-cancer therapy is to develop therapeutic agents tailored on the patient characteristic,
since it is futile and even counterproductive to administer a therapy to a patient who will
not benefit of it (see reference [67] in this issue). The retargeted oHSVs meet this need.
It is interesting to note that the restriction to predefined targets is shared with CAR-Ts
(chimeric antigen receptor T cells) to solid tumors, which are essentially addressed to
the same targets as the retargeted oHSVs [68,69]. The retargeted oHSVs and CAR-Ts
could potentially be combined, and the combination could overcome some of the limits
encountered by CAR-Ts, e.g., the difficulty to populate the tumors and to overcome the TME
immunosuppression, essentially hostile to lymphocyte proliferation and activation [70].

A second Con is that the retargeted oHSVs strictly depend on the presence of the tar-
geted receptor for infection, also for infection of producer cells. This property greatly limits
the repertoire of cells which can be employed for production. Inasmuch as it advisable to
make use of non-cancerous cells for clinical grade virus production, we set-up a strategy
for virus growth, based on a double retargeting. Finally, it has long been debated that
a disadvantage of employing human viruses as OVs is the prior immunity, which can
block virions, particularly if they are administered by systemic routes. This notion should
be reassessed in light of the interesting discovery that prior immunity, or an unrelated
immune response, can actually contribute to unleashing the TME immunosuppression [71].
Indeed, the high efficacy deployed by the retargeted oHSVs enabled a systemic delivery,
even in mice carrying a prior immunity to HSV [21]. In the field of vaccines to infectious
agents, an analogous potentiation of the innate response by immunologically unrelated
priming was also reported [72]. Whether such effects apply to humans treated with HSV-
based OVs remains to be determined.

On the Pro side, the IL-12-positive R-337 was highly effective in eradicating the pri-
mary tumor, modifying the TME, and eliciting an antigen-agnostic long-term anti-tumor
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vaccination. How do we explain the high abscopal efficacy and antigen-agnostic vacci-
nation? It is well known that wt-HSVs cause immunogenic cell death and are inducers
of innate response, which they blunt later in infection [35–38]. Typical features of the in-
nate response to HSV are the secretion of IFN-α, -β, and -γ—through STING and other
sensors—and of additional pro-inflammatory cytokines, infiltration by and activation of
NK cells, of CD4+ and CD8+ lymphocytes, and of dendritic cells (DCs). The high levels of
IFN-γ and the recruitment and activation of DCs, T and NK cells are hallmarks of the early
phases of innate and adaptive responses to the tumor. Thus, the innate antiviral response
may well serve as the switch that turns on the anti-tumor innate response; the latter then
evolves into the adaptive response [73]. The LLC-1-HER2 tumor employed in current
studies exemplifies a tumor insensitive to anti-PD-1. Treatment with R-337 efficiently un-
leashed the resistance, such that the efficacy of both R-337 and anti-PD-1 were dramatically
increased in a combination regimen and resulted in high protection. Thus, the retargeted
oHSVs appear to serve well the function of augmenting the tumor sensitivity to CPIs.

In mice there was no detectable off-tumor and off-target infections, even though
the potential of spread to tissues with low level expression of the targeted receptor (HER-2,
in our case) remains to be verified in humans for any given retargeted oHSV.

In conclusion, major difficulties facing the clinical translation of retargeted oHSVs to
the clinic have been tackled and solutions have been found. The stage is ready for further
developments and for verification at the bedside of how well this class of therapeutic
agents will hold promise.
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