132 research outputs found

    Magnetic and Electrical Properties of Ordered 112-type Perovskite LnBaCoMnO5+\delta (Ln = Nd, Eu)

    Full text link
    Investigation of the oxygen-deficient 112-type ordered oxides of the type LnBaCoMnO5+\delta (Ln = Nd, Eu) evidences certain unusual magnetic behavior at low temperatures, compared to the LnBaCo2O5+\delta cobaltites. One observes that the substitution of manganese for cobalt suppresses the ferromagnetic state and induces strong antiferromagnetic interactions. Importantly, NdBaCoMnO5.9 depicts a clear paramagnetic to antiferromagnetic type transition around 220 K, whereas for EuBaCoMnO5.7 one observes an unusual magnetic behavior below 177 K which consists of ferromagnetic regions embedded in an antiferromagnetic matrix. The existence of two sorts of crystallographic sites for Co/Mn and their mixed valence states favor the ferromagnetic interaction whereas antiferromagnetism originates from the Co3+-O-Co3+ and Mn4+-O-Mn4+ interactions. Unlike the parent compounds, the present Mn-substituted phases do not exhibit prominent magnetoresistance effects in the temperature range 75-400K.Comment: 23 pages including figure

    Structural mapping in statistical word problems: A relational reasoning approach to Bayesian inference

    Get PDF
    Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations

    From reading numbers to seeing ratios: a benefit of icons for risk comprehension

    Get PDF
    Promoting a better understanding of statistical data is becoming increasingly important for improving risk comprehension and decision-making. In this regard, previous studies on Bayesian problem solving have shown that iconic representations help infer frequencies in sets and subsets. Nevertheless, the mechanisms by which icons enhance performance remain unclear. Here, we tested the hypothesis that the benefit offered by icon arrays lies in a better alignment between presented and requested relationships, which should facilitate the comprehension of the requested ratio beyond the represented quantities. To this end, we analyzed individual risk estimates based on data presented either in standard verbal presentations (percentages and natural frequency formats) or as icon arrays. Compared to the other formats, icons led to estimates that were more accurate, and importantly, promoted the use of equivalent expressions for the requested probability. Furthermore, whereas the accuracy of the estimates based on verbal formats depended on their alignment with the text, all the estimates based on icons were equally accurate. Therefore, these results support the proposal that icons enhance the comprehension of the ratio and its mapping onto the requested probability and point to relational misalignment as potential interference for text-based Bayesian reasoning. The present findings also argue against an intrinsic difficulty with understanding single-event probabilities

    Functional Disconnection and Compensation in Mild Cognitive Impairment: Evidence from DLPFC Connectivity Using Resting-State fMRI

    Get PDF
    The known regional abnormality of the dorsolateral prefrontal cortex (DLPFC) and its role in various neural circuits in mild cognitive impairment (MCI) has given prominence to its importance in studies on the disconnection associated with MCI. The purpose of the current study was to examine the DLPFC functional connectivity patterns during rest in MCI patients and the impact of regional grey matter (GM) atrophy on the functional results. Structural and functional MRI data were collected from 14 MCI patients and 14 age, gender-matched healthy controls. We found that both the bilateral DLPFC showed reduced functional connectivity with the inferior parietal lobule (IPL), superior/medial frontal gyrus and sub-cortical regions (e.g., thalamus, putamen) in MCI patients when compared with healthy controls. Moreover, the DLPFC connectivity with the IPL and thalamus significantly correlated with the cognitive performance of patients as measured by mini-mental state examination (MMSE), clock drawing test (CDT), and California verbal learning test (CVLT) scores. When taking GM atrophy as covariates, these results were approximately consistent with those without correction, although there may be a decrease in the statistical power. These results suggest that the DLPFC disconnections may be the substrates of cognitive impairments in MCI patients. In addition, we also found enhanced functional connectivity between the left DLPFC and the right prefrontal cortex in MCI patients. This is consistent with previous findings of MCI-related increased activation during cognitive tasks, and may represent a compensatory mechanism in MCI patients. Together, the present study demonstrated the coexistence of functional disconnection and compensation in MCI patients using DLPFC functional connectivity analysis, and thus might provide insights into biological mechanism of the disease

    Brain Structural Networks Associated with Intelligence and Visuomotor Ability

    Get PDF
    Increasing evidence indicates that multiple structures in the brain are associated with intelligence and cognitive function at the network level. The association between the grey matter (GM) structural network and intelligence and cognition is not well understood. We applied a multivariate approach to identify the pattern of GM and link the structural network to intelligence and cognitive functions. Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based morphometry analysis was applied to the imaging data to extract GM structural covariance. We assessed the intelligence, verbal fluency, processing speed, and executive functioning of the participants and further investigated the correlations of the GM structural networks with intelligence and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component and the frontal component were significantly associated with intelligence. The parietal and frontal regions were each distinctively associated with intelligence by maintaining structural networks with the cerebellum and the temporal region, respectively. The cerebellar component was associated with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by demonstrating how each core region for intelligence works in concert with other regions. In addition, we revealed how the cerebellum is associated with intelligence and cognitive functions

    Developmental dyscalculia: a dysconnection syndrome?

    Full text link
    Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10 years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia

    Brain cortical characteristics of lifetime cognitive ageing

    Get PDF
    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain’s cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r < 0.180, FDR-corrected q < 0.05). There were no significant associations between cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences
    corecore