27 research outputs found

    New high order sufficient conditions for configuration tracking

    Full text link
    In this paper, we propose new conditions guaranteeing that the trajectories of a mechanical control system can track any curve on the configuration manifold. We focus on systems that can be represented as forced affine connection control systems and we generalize the sufficient conditions for tracking known in the literature. The new results are proved by a combination of averaging procedures by highly oscillating controls with the notion of kinematic reduction.Comment: arXiv admin note: text overlap with arXiv:0911.536

    Global controllability tests for geometric hybrid control systems

    Get PDF
    Hybrid systems are characterized by having an interaction between continuous dynamics and discrete events. The contribution of this paper is to provide hybrid systems with a novel geometric formulation so that controls can be added. Using this framework we describe some new global controllability tests for hybrid control systems exploiting the geometry and the topology of the set of jump points, where the instantaneous change of dynamics take place. Controllability is understood as the existence of a feasible trajectory for the system joining any two given points. As a result we describe examples where none of the continuous control systems are controllable, but the associated hybrid system is controllable because of the characteristics of the jump set.Comment: 27 pages, 5 figure

    Higher-order Mechanics: Variational Principles and other topics

    Get PDF
    After reviewing the Lagrangian-Hamiltonian unified formalism (i.e, the Skinner-Rusk formalism) for higher-order (non-autonomous) dynamical systems, we state a unified geometrical version of the Variational Principles which allows us to derive the Lagrangian and Hamiltonian equations for these kinds of systems. Then, the standard Lagrangian and Hamiltonian formulations of these principles and the corresponding dynamical equations are recovered from this unified framework.Comment: New version of the paper "Variational principles for higher-order dynamical systems", which was presented in the "III Iberoamerican Meeting on Geometry, Mechanics and Control" (Salamanca, 2012). The title is changed. A detailed review is added. Sections containing results about variational principles are enlarged with additional comments, diagrams and summarizing results. Bibliography is update

    Geometric Approach to Pontryagin's Maximum Principle

    Get PDF
    Since the second half of the 20th century, Pontryagin's Maximum Principle has been widely discussed and used as a method to solve optimal control problems in medicine, robotics, finance, engineering, astronomy. Here, we focus on the proof and on the understanding of this Principle, using as much geometric ideas and geometric tools as possible. This approach provides a better and clearer understanding of the Principle and, in particular, of the role of the abnormal extremals. These extremals are interesting because they do not depend on the cost function, but only on the control system. Moreover, they were discarded as solutions until the nineties, when examples of strict abnormal optimal curves were found. In order to give a detailed exposition of the proof, the paper is mostly self\textendash{}contained, which forces us to consider different areas in mathematics such as algebra, analysis, geometry.Comment: Final version. Minors changes have been made. 56 page
    corecore