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Abstract

Since the second half of the 20th century, Pontryagin’s Maximum Principle has been
widely discussed and used as a method to solve optimal control problems in medicine,
robotics, finance, engineering, astronomy. Here, we focus on the proof and on the under-
standing of this Principle, using as much geometric ideas and geometric tools as possible.
This approach provides a better and clearer understanding of the Principle and, in particular,
of the role of the abnormal extremals. These extremals are interesting because they do not
depend on the cost function, but only on the control system. Moreover, they were discarded
as solutions until the nineties, when examples of strict abnormal optimal curves were found.
In order to give a detailed exposition of the proof, the paper is mostly self–contained, which
forces us to consider different areas in mathematics such as algebra, analysis, geometry.
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1 Introduction

The importance of Pontryagin’s Maximum Principle as a method to find solutions to optimal
control problems is the main justification for this work. The use and the comprehension of this
Principle does not always gather together. The understanding of this Maximum Principle never
finishes as shows the continuous wide number of references in this topic [2, 8, 16, 18, 19, 24, 44,
51, 52, 53, 64, 70, 71, 72] and references therein. We try to contribute to this process through
a differential geometric approach.

When we can interfere in the evolution of a dynamical system, we deal with a control system;
that is, a differential equation depending on parameters, which are called controls. The way we
interfere in the control system consists of changing the controls arbitrarily. In optimal control
problems, the controls are chosen such that the integral of a given cost function is minimized.
That functional to be minimized can correspond with the time, the energy, the length of a path
or other magnitude related to the system.

In general, to find a solution to an optimal control problem is not straightforward. A valuable
tactic to deal with these problems is to restrict the candidates to be solution through necessary
conditions for optimality, such as those given by Pontryagin’s Maximum Principle. This tech-
nique is used in a wide range of disciplines, as for instance engineering [28, 30, 38, 55], aerospace
[69], robotics [35, 37, 62], medicine [47], economics [45, 57], traffic flow [36]. Nevertheless, it is
worth remarking that the Maximum Principle does not give sufficient conditions to compute an
optimal trajectory; it only provides necessary conditions. Thus only candidates to be optimal
trajectories are found, called extremals. To determine if they are optimal or not, other results
related to the existence of solutions for these problems are needed. See [2, 8, 34, 53] for more
details.

In 1958 the International Congress of Mathematicians was held in Edinburgh, Scotland,
where for the first time L. S. Pontryagin talked publicly about the Maximum Principle. This
Principle was developed by a research group on automatic control created by Pontryagin in the
fifties. He was engaged in applied mathematics by his friend A. Andronov and because scientists
in the Steklov Mathematical Institute were asked to carry out applied research, especially in the
field of aircraft dynamics.

At the same time, in the regular seminars on automatic control in the Institute of Au-
tomatics and Telemechanics, A. Feldbaum introduced Pontryagin and his collegues to the
time–optimization problem. This allowed them to study how to find the best way of pilot-
ing an aircraft in order to defeat a zenith fire point in the shortest time as a time–optimization
problem.

Since the equations for modelling the aircraft’s problem are nonlinear and the control of the
rear end of the aircraft runs over a bounded subset, it was necessary to reformulate the calculus
of variations known at that time. Taking into account ideas suggested by E. J. McShane in [58],
Pontryagin and his collaborators managed to state and prove the Maximum Principle, which
was published in Russian in 1961 and translated into English [64] the following year. See [17]
for more historical remarks.

Initially the approach to optimal control problems was from the point of view of the dif-
ferential equations [8, 53, 64, 76], but later the approach was from the differential geometry
[2, 21, 44, 70]. Furthermore, the Maximum Principle is being modified to study stochastic



control systems [12, 42] and discrete control systems [29, 39, 43]. Lately, the Skinner–Rusk
formulation [67] has been applied to study optimal control problem for non–autonomous control
systems, obtaining again the necessary conditions of Pontryagin’s Maximum Principle, as long
as the differentiability with respect to controls is assumed [9]. This formulation is suitable to
deal with implicit optimal control problems that come up in engineering problems described by
the descriptor systems [60, 61]. This Principle also admits a presymplectic formalism that gives
weaker necessary conditions for optimality [11, 32, 33].

Therefore, it is concluded that Pontryagin’s Maximum Principle has had and still has a great
impact in optimal control theory. The references mentioned show that the research is still active
as for the understanding and also for the applications of the Maximum Principle.

A symplectic Hamiltonian formalism to optimal control problems is provided by the necessary
conditions stated in Pontryagin’s Maximum Principle. The solutions to the problem are in the
phase space manifold of the system, but the Maximum Principle relates solutions to a lift to the
cotangent bundle of that manifold. Thus, in order to find candidates to be optimal solutions,
not only the controls but also the momenta must be chosen appropriately so that the necessary
conditions in the Maximum Principle are fulfilled. These conditions are, in fact, first–order
necessary conditions and they are not always enough to determine the evolution of all the
degrees of freedom in the problem. That is why sometimes it is necessary to use the high order
Maximum Principle [14, 46, 48, 49]. But, even when we succeed in finding the controls and the
momenta in such a way that Hamilton’s equations can be integrated to obtain a trajectory on the
manifold, the controls and the momenta are not necessarily unique. In other words, different
controls and different momenta can give the same trajectory on the manifold, although the
necessary conditions in the Maximum Principle will be satisfied in different ways. The momenta
and the controls determine different kinds of trajectories, which can be abnormal, normal, strict
abnormal, strict normal and singular. We point out that these different kinds of extremals do
not provide a partition of the set of trajectories in the manifold, because it may happen that
a trajectory admits more than one lift to the momenta space so that the trajectory is in two
different categories.

For years, abnormal extremals were discarded because it was thought that they could not
be optimal [41, 68]. The idea was that abnormal extremals were isolated curves and thus it was
impossible to consider any variation of these curves. However, in [59] it is proved that there exist
abnormal minimizers by giving an example in subRiemannian geometry. Furthermore, in [56] the
strict abnormal minimizers are characterized in a general way, studying the length–minimizing
problem in subRiemannian geometry when there are only two controls. To be more precise,
a large enough set with abnormal extremals is given and it contains strict abnormal curves
that are locally optimal for the considered control–linear system. Here began a new interest
in the abnormal extremals [3, 5, 6, 20, 51, 52]. What makes these extremals more special is
that the abnormality does not depend on the cost function. Hence, the abnormal extremals
can be determined exclusively using the geometry of the control system. Thus abnormality and
controllability must be closely related. In fact, in order to have abnormal minimizers, the system
cannot be controllable. In control theory, controllability is still one of the properties under active
research [1, 7] and the same happens with abnormality in optimal control theory. Moreover,
the controllability is related with the reachable set. Thus, as first pointed out in [24, 52], the
geometry of the reachable set also helps to characterize the abnormal extremals.

On the other hand, the cost function is essential to prove that abnormal extremals are
abnormal minimizers, as pointed out in §3.4. That is why the existence or non–existence of
abnormal minimizers is only known for specific control problems, mainly control–linear and con-
trol–affine systems with control–quadratic cost functions or for time–optimal control problems
[4, 6, 19, 26, 27, 77].
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How the necessary conditions of Pontryagin’s Maximum Principle are satisfied determines
the kind of extremals obtained, in particular, the abnormal ones. That is why the thorough
proof of the Maximum Principle given here gives insights into the geometric understanding of
the abnormality. Any chance we have along the report to make a comment about abnormality
will be made because that might help to characterize strict abnormality in the future.

In this paper, we go through the entire proof of Pontryagin’s Maximum Principle translating
it into a geometric framework, but preserving the outline of the original proof. All details have
been carefully proved, making us to go into the details of concepts such as time–dependent
variational equations and their properties, separation conditions given by hyperplanes and con-
vexity. All this is included as appendices in order not to disturb the continuous evolution of the
concepts here given. Nevertheless, we assume some knowledge in differential geometry, such as
the core chapters of [54], differential equations [25, 31, 40], and convexity [13, 65].

The control systems in this report are given by a vector field along a projection, that is
defined in §2 together with its properties. In the heart of the report there are two big parts
corresponding with two different statements of Pontryagin’s Maximum Principle. In §3 and
§4, it is studied the optimal control problem with both the time interval and the endpoints
given. If the final time is not given and the endpoints are not fixed but they must be in specific
submanifolds, then the problem is studied in §5 and §6. These four sections have been written
in an analogous way. First of all, two different but equivalent statements of the optimal control
problems are given. The so–called extended system is the useful one in §4 and §6 because the
functional to be minimized is included as a new coordinate of the system. The last subsection in
§3 and §5 explains the associated Hamiltonian problem that leads to the statements of Maximum
Principle. In this way, the proof is just in §4 and §6.

One part of the proof of Pontryagin’s Maximum Principle consists of perturbing the given
optimal curve, therefore we introduce in §3.3 and §5.2 how this curve can be perturbed depending
on the known data. Above all, it is important the complete proof of Proposition 3.12, although
known, to our knowledge, there is not a self–contained proof of it in the literature.

The appendices contain essential results for the core of the report and also some explanation
to make clear some well–known ideas related to time–dependent vector fields in Appendix B,
the reachable set and the tangent perturbation cone in Appendix C.

The study of the time–dependent variational equations treated in Appendix B gives a clear
picture of the flows of the complete lift and of the cotangent lift of a time–dependent vector field
via Propositions B.1, B.2, B.4, B.5. These results although known, to our knowledge, have not
appeared in the literature.

Appendix C devotes to the careful study of the connection between the reachable set and
the tangent perturbation cone, because the proof of Pontryagin’s Maximum Principle suggests
that all the perturbation vectors generate a linear approximation of the reachable set in some
sense. That sense will become clear in Proposition C.1, which proves a result assumed as true
in the literature.

To summarize the main contributions of the paper are:

• The proof of Proposition 3.12, that is useful to prove Pontryagin’s Maximum Principle. All
the proofs of this Proposition in the literature, to our knowledge, are not written carefully
enough. This Proposition is adapted for Pontryagin’s Maximum Principle without fixing
the final time in Proposition 5.9.

• The complete proof of Pontryagin’s Maximum Principle in a symplectic framework as in
[70], but here we include all the necessary results and the analytical reasoning, which has
been sketched in great detail.
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• The highlight of the properties concerning the abnormal extremals that can be deduced
from the classical result in [64].

• An analytic result necessary in Pontryagin’s Maximum Principle, which is proved in Propo-
sition A.7. This result is used in [64], but without proving it.

• The intrinsic study of the flows of the complete lift and the cotangent lift of a time–de-
pendent vector field in Appendix B, including the proofs of Propositions B.1, B.2, B.4 and
B.5.

• The geometric understanding of the interpretation of the tangent perturbation cone as
linear approximation of the reachable set in Appendix C, including the proof of Proposition
C.1.

As for the future and actual research line, we point out that all the effort to elaborate this
work is being used to enlighten the research, from a geometric point of view, on abnormal and
strict abnormal extremals in optimal control problems in general [10], and for mechanical systems
[11]. The study of strict abnormal minimizers impose us to consider different cost functions,
because only the property of being an abnormal extremal depends exclusively on the geometry
of the control system. That makes the problem of searching for strict abnormal minimizers much
harder and the possible forthcoming results will be valid only for determined optimal control
problems.

To conclude this introduction, we remark that Pontryagin’s Maximum Principle provides
first–order necessary conditions for optimality. These conditions are not always enough to de-
termine the controls for abnormal and singular extremals, then high order Maximum Principle
is necessary [49]. The Maximum Principle works with linear approximation of the trajectories,
whereas in the high order Maximum Principle high order perturbations must be considered
[14, 15, 46, 48, 49]. The way to construct the proof is the same as in Pontryagin’s Maximum
Principle, but now the tangent perturbation cones are bigger since not only linear approximation
of the trajectories are considered. In the same way we have provided a geometric meaning to
most of the elements in Pontryagin’s Maximum Principle, we expect to give a geometric version
of high order Maximum Principle suggested by [49], focusing on abnormality.

The origin of this report was a series of seminars and talks with Professor Andrew D. Lewis
during his stay in our Department on sabbatical during the first term of 2005. We tried to
understand the details of the proof as a way to work on some aspects of controllability and
accesibility of control systems with a cost function, [24, 44], and where abnormal solutions are
in the accesibility sets.

In the sequel, unless otherwise stated, all the manifolds are real, second countable and C∞
and the maps are assumed to be C∞. Sum over repeated indices is understood.

2 General setting

From the differential geometric viewpoint a control system is understood as a vector field depend-
ing on parameters. Properties about how the integral curves of differential equations depending
on parameters evolve are explained in [25, 31, 40, 50] and used in §3.3 and §5.2.

Let M be a differentiable manifold of dimension m and U be a set in Rk. Consider the trivial
Euclidean bundle π : M × U → M .

Definition 2.1. A vector field X on M along the projection π is a mapping X : M ×U →
TM such that X is continuous on M × U , continuously differentiable on M for every u ∈ U
and τM ◦X = π, where τM : TM → M is the canonical tangent projection.
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The set of vector fields along the projection π is denoted by X(π). If (V, xi) is a local chart
at x in M , then locally a vector field X along the projection is given by f i∂/∂xi, where f i are
functions defined on V × U .

Let I = [a, b] ⊂ R be a closed interval, (γ, u) : I → M × U is an integral curve of X if
γ̇(t) = X(γ(t), u(t)). All these elements come together in Diagram (2.1).

TM

τM

��
M × U

X
::ttttttttt π // M

I

(γ, u)
OO

γ
::ttttttttttt

(2.1)

In other words, X is a vector field depending on parameters in U . In this work, the parameters
are called controls and are assumed to be measurable mappings u : I → U such that Im u is
bounded. Given the parameter u, we have a time–dependent vector field on M ,

X{u} : I ×M −→ TM

(t, x) 7−→ X{u}(t, x) = X(x, u(t)).
(2.2)

For an integral curve (γ, u) of X, it is said that γ is an integral curve of X{u}, as shown in the
following commutative diagram:

I ×M
X{u}

// TM

I

(γ, Id)
OO

(γ, u)
//

γ̇
99sssssssssss

M × U

X

OO

(2.3)

That is, X{u} ◦ (γ, Id) = γ̇ = X ◦ (γ, u).

A differentiable time–dependent vector field X has associated the time dependent flow or
evolution operator of X defined as

ΦX : I × I ×M −→ M
(t, s, x) 7−→ ΦX(t, s, x) = ΦX

(s,x)(t)

where ΦX
(s,x) is the integral curve of X with initial condition x at time s. See Appendix B.1 for

more details. Moreover, the evolution operator defines a diffeomorphism on M that is used in
the following section ΦX

(t,s) : M → M , x 7→ ΦX
(t,s)(x) = ΦX

(s,x)(t).

As the controls u : I → U are measurable and bounded, the vector fields X{u} are measurable
on t, and for a fixed t, they are differentiable on M . Hence, the notion of Carathéodory vector
fields must be considered [25, 31] from now on. Then, we only consider absolutely continuous
curves γ : I → M to be generalized integral curves of the vector field X{u}; that is, they only
satisfy γ̇ = X ◦ (γ, u) at points where γ is derivable, which happens almost everywhere. The
existence and uniqueness of these integral curves are guaranteed once the parameter is fixed
because of the theorems of existence and uniqueness of differential equations depending on
parameters. For more details about absolute continuity, see Appendix A and [25, 31, 74].
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3 Pontryagin’s Maximum Principle for fixed time and fixed end-
points

We particularize the general setting described in §2 for optimal control theory. To make clear
we are in a specific case the manifold is denoted by Q, instead of M .

3.1 Statement of optimal control problem and notation

Let Q be a differentiable manifold of dimension m and U ⊂ Rk a subset. Let us consider the
trivial Euclidean bundle π : Q× U → Q.

Let X be a vector field along the projection π : Q× U → Q as in Definition 2.1. If (V, xi) is
a local chart at a point in Q, the local expression of the vector field is X = f i∂/∂xi where f i

are functions defined on V × U .

Let I ⊂ R be an interval and (γ, u) : I → Q × U be a curve. Given F : Q × U → R, let us
consider the functional

S[γ, u] =
∫

I
F (γ, u) dt

defined on curves (γ, u) with a compact interval as domain. The function F : Q × U → R is
continuous on Q× U and continuously differentiable with respect to Q on Q× U .

Statement 3.1. (Optimal Control Problem, OCP) Given the elements Q, U , X, F , I =
[a, b] and the endpoint conditions xa, xb ∈ Q, consider the following problem.

Find (γ∗, u∗) such that

(1) endpoint conditions: γ∗(a) = xa, γ∗(b) = xb,

(2) γ∗ is an integral curve of X{u∗}: γ̇∗(t) = X(γ∗(t), u∗(t)), t ∈ I, and

(3) minimal condition: S[γ∗, u∗] is minimum over all curves (γ, u) satisfying (1) and (2).

The tuple (Q,U,X, F, I, xa, xb) denotes the optimal control problem. The function F is called
the cost function of the problem. The mappings u : I → U are called controls.

Comments:

1. The curves considered in the previous statement satisfy the same properties as the gen-
eralized integral curves of vector fields along a projection described in §2. That is, γ is
absolutely continuous and the controls u are measurable and bounded.

2. Locally, condition (2) is equivalent to the fact that the curve (γ∗, u∗) satisfies the differential
equation ẋi = f i.

3.2 The extended problem

Taking into account the elements defining the optimal control problem and their properties, we
state an equivalent problem.

Given the OCP (Q,U,X, F, I, xa, xb), let us consider Q̂ = R × Q and the trivial Euclidean
bundle π̂ : Q̂× U → Q̂.

Let X̂ be the following vector field along the projection π̂ : Q̂× U → Q̂:

X̂(x0, x, u) = F (x, u)∂/∂x0|(x0,x,u) + X(x, u),
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where x0 is the natural coordinate on R. According to Equation (2.2), this vector field can be
rewritten as X̂{u}.

Given a curve (γ̂, u) = ((x0 ◦ γ̂, γ), u) : I → Q̂× U such that γ̂ is absolutely continuous and
u is measurable and bounded, the previous elements come together in the following diagram:

TQ̂

τ bQ
��

Q̂× U

X̂
<<yyyyyyyy

π̂ // Q̂

π2

��
I

(γ̂, u)
OO

γ̂
;;xxxxxxxxxxx γ // Q

where π2 is the projection of Q̂ onto Q.

Statement 3.2. (Extended Optimal Control Problem, ÔCP) Given the above–mentioned
OCP (Q,U,X, F, I, xa, xb), Q̂ and X̂, consider the following problem.

Find (γ̂∗, u∗) such that

(1) endpoint conditions: γ̂∗(a) = (0, xa), γ∗(b) = xb,

(2) γ̂∗ is an integral curve of X̂{u∗}: ˙̂γ
∗
(t) = X̂(γ̂∗(t), u∗(t)), t ∈ I, and

(3) minimal condition: γ∗
0
(b) is minimum over all curves (γ̂, u) satisfying (1) and (2).

The tuple (Q̂, U, X̂, I, xa, xb) denotes the extended optimal control problem.

1. The functional γ∗
0
(b) to be minimized in the ÔCP is equal to the functional defined in

the OCP . That is to say, we have

Ŝ[γ̂, u] = γ0(b) =
∫ b

a
F (γ, u)dt = S[γ, u]

for curves (γ̂, u).

2. Locally, the condition (2) is equivalent to the fact that the curve (γ̂∗, u∗) satisfies the
differential equations ẋ0 = F , ẋi = f i.

The elements in the problem (M̂, U, X̂, I, xa, xb) satisfy properties analogous to the ones
fulfilled by the elements in the problem (M,U,X, F, I, xa, xb), but for different spaces; see §2,
§3.1 for more details about the properties.

3.3 Perturbation and associated cones

The following constructions can be defined for any vector field depending on parameters—see
§2—in particular, for those vector fields defining a control system. In order not to make the
notation harder, we will construct everything on M , but the same can be done on M̂ or on any
other convenient manifold, as for instance the tangent bundle TQ for the mechanical case.
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3.3.1 Elementary perturbation vectors: class I

Now we study how integral curves of the time–dependent vector field X{u} : M × I → TM ,
introduced in §2, change when the control u is perturbed in a small interval.

In the sequel, a measurable and bounded control u : I = [a, b] → U and an absolutely
continuous integral curve γ : I → M of X{u} are given. Let π1 = {t1, l1, u1}, where t1 is a
Lebesgue time in (a, b) always for the X ◦ (γ, u)—i.e. it satisfies Equation (A.17)—l1 ∈ R+,
u1 ∈ U . From now on, to simplify, t1 is called just a Lebesgue time. For every s ∈ R+ small
enough such that a < t1 − l1s, consider u[πs

1] : I → U defined by

u[πs
1](t) =

{
u1, t ∈ [t1 − l1s, t1],
u(t), elsewhere.

Definition 3.3. The function u[πs
1] is called an elementary perturbation of u specified by

the data π1 = {t1, l1, u1}. It is also called a needle–like variation.

Associated to u[πs
1], consider the mapping γ[πs

1] : I → M , the generalized integral curve of
X{u[πs

1]} with initial condition (a, γ(a)).

Given ε > 0, define the map

ϕπ1 : I × [0, ε] −→ M
( t , s ) 7−→ ϕπ1(t, s) = γ[πs

1](t)

For every t ∈ I, ϕt
π1

: [0, ε] → M is given by ϕt
π1

(s) = ϕπ1(t, s).

As the controls are assumed to be measurable and bounded, it makes sense to define the
distance between two controls u, u : I → U as follows

d(u, u) =
∫

I
‖u(t)− u(t)‖ dt

where ‖ · ‖ is the usual norm in Rk. Here, a bounded control u : I → U means that there
exists a compact set in U that contains Im u. The control u[πs

1] depends continuously on the
parameters s and π1 = {t1, l1, u1}; that is, given ε > 0 there exists δ > 0 such that if |t1 − t2| < δ,
|l1 − l2| < δ, ‖u1 − u2‖ < δ, |s1 − s2| < δ, then d(u[πs1

1 ], u[πs2
2 ]) < ε.

Hence the curve ϕt
π1

depends continuously on s and π1 = {t1, l1, u1}, then it converges
uniformly to γ as s tends to 0. See [25, 31] for more details of the differential equations depending
continuously on parameters.

Let us prove that the curve ϕt1
π1

has a tangent vector at s = 0. Let u[πs
1] be an elementary

perturbation of u specified by π1 = {t1, l1, u1} and consider the curve ϕt1
π1

: [0, ε] → M , ϕt1
π1

(s) =
γ[πs

1](t1).

Proposition 3.4. If t1 is a Lebesgue time, then the curve ϕt1
π1

: [0, ε] → M is differentiable at
s = 0. Its tangent vector is [X(γ(t1), u1)−X(γ(t1), u(t1))] l1.

Proof. It is enough to prove that for every differentiable function g : M → R, there exists

A = lim
s→0

g(ϕt1
π1

(s))− g(ϕt1
π1

(0))
s

.

As this is a derivation on the functions defined on a neighbourhood of γ(t1), it is enough to
prove the proposition for the coordinate functions xi of a local chart at γ(t1). Thus take g = xi,

A = lim
s→0

(xi ◦ ϕt1
π1

)(s)− (xi ◦ ϕt1
π1

)(0)
s

= lim
s→0

(xi ◦ γ[πs
1])(t1)− (xi ◦ γ)(t1)

s

= lim
s→0

γi[πs
1](t1)− γi(t1)

s
.
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As γ is an absolutely continuous integral curve of X{u} , γ̇(t) = X(γ(t), u(t)) at every Lebesgue
time. Then integrating

γi(t1)− γi(a) =
∫ t1

a
f i(γ(t), u(t))dt

and similarly for γ[πs
1] and u[πs

1]. Observe that γ[πs
1](t) = γ(t) and u[πs

1](t) = u(t) for t ∈
[a, t1 − l1s). Then,

A = lim
s→0

∫ t1
a f i(γ[πs

1](t), u[πs
1](t))dt−

∫ t1
a f i(γ(t), u(t))dt

s

= lim
s→0

∫ t1
t1−l1s f i(γ[πs

1](t), u1)dt−
∫ t1
t1−l1s f i(γ(t), u(t))dt

s
.

As t1 is a Lebesgue time, we use Equation (A.17):∫ t

t−h
X(γ(s), u(s))ds = hX(γ(t), u(t)) + o(h)

in such a way that

A = lim
s→0

f i(γ[πs
1](t1), u1)l1s− f i(γ(t1), u(t1))l1s + o(s)

s

= lim
s→0

[f i(γ[πs
1](t1), u1)− f i(γ(t1), u(t1))] l1.

As f i is continuous on M , we have

A = lim
s→0

[f i(γ[πs
1](t1), u1)− f i(γ(t1), u(t1))] l1 = [f i(lim

s→0
γ[πs

1](t1), u1)− f i(γ(t1), u(t1))] l1

= [f i(γ(t1), u1)− f i(γ(t1), u(t1))] l1 = [(X(γ(t1), u1)−X(γ(t1), u(t1))) l1] (xi).

Definition 3.5. The tangent vector v[π1] = (X(γ(t1), u1)−X(γ(t1), u(t1))) l1 ∈ Tγ(t1)M is the
elementary perturbation vector associated to the perturbation data π1 = {t1, l1, u1}.
It is also called a perturbation vector of class I.

Comments:

(a) The previous proof shows the importance of defining perturbations only at Lebesgue times,
otherwise the elementary perturbation vectors may not exist.

(b) Observe that if we change π1 = {t1, l1, u1} for π2 = {t1, l2, u1}, then v[π1] = (l1/l2) v[π2].
If v[π1] is a perturbation vector of class I and λ ∈ R+, then λ v[π1] is also a perturbation
vector of class I with perturbation data {t1, λ l1, u1}.

(c) We write L(w)g for the derivative of the function g in the direction given by the vector
w ∈ TxM . Due to Proposition 3.4, for every differentiable function g : M → R we have

g(ϕt1
π1

(s))− g(γ(t1))− s L(v[π1])g
s

−→
s→0

0.

Hence
g
(
ϕt1

π1
(s)
)

= g (γ(t1)) + sL(v[π1])g + o(s).

If (xi) are local coordinates of a chart at γ(t1),

xi
(
ϕt1

π1
(s)
)

= xi (γ(t1)) + s v[π1]i + o(s).
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That is, (
ϕt1

π1

)i (s) = γi(t1) + s v[π1]i + o(s).

Now, if we identify the open set of the local chart and the tangent space to M at γ(t1)
with the same space Rm, we write the following linear approximation

ϕt1
π1

(s) = γ(t1) + s v[π1] + o(s). (3.4)

The initial condition for the velocity given by the elementary perturbation vector evolves
along the reference trajectory γ through the integral curves of the complete lift

(
XT
){u} of

X{u}, as explained in Appendix B.2. Note that ϕt
π1

(s) = ΦX{u}

(t,t1)

(
ϕt1

π1
(s)
)

for t ≥ t1 because of
the definition of ϕπ1 and u[πs

1].

Proposition 3.6. Let V [π1] : [t1, b] → TM be the integral curve of the complete lift
(
XT
){u} of

X{u} with initial condition (t1, (γ(t1), v[π1])). For every Lebesgue time t ∈ (t1, b], V [π1](t) is the
tangent vector to the curve ϕt

π1
: [0, ε] → M at s = 0.

Proof. The proof follows from Proposition B.1 and the definition of the curves considered.

3.3.2 Perturbation vectors of class II

The control can be perturbed twice instead of only once, in fact it may be modified a fi-
nite number of times. If t2 is a Lebesgue time greater than t1 and we perturb the con-
trol with π1 = {t1, l1, u1} and π2 = {t2, l2, u2}, then we obtain the perturbation data π12 =
{(t1, t2), (l1, l2), (u1, u2)}, which is given by

u[πs
12](t) =


u1, t ∈ [t1 − l1s, t1],
u2, t ∈ [t2 − l2s, t2],
u(t), elsewhere

for every s ∈ R+ small enough such that [t1 − l1s, t1] ∩ [t2 − l2s, t2] = ∅. Then γ[πs
12] : I −→

M is the generalized integral curve of X{u[πs
12]} with initial condition (a, γ(a)). Observe that

γ[π0
12](t) = γ(t). Consider the curve ϕt2

π12
: [0, ε] → M given by ϕt2

π12
(s) = γ[πs

12](t2).

Proposition 3.7. Let t1, t2 be Lebesgue times such that t1 < t2. The vector tangent to
ϕt2

π12
: [0, ε] → M at s = 0 is v[π2] + V [π1](t2), where V [π1] : [t1, b] → TM is the generalized

integral curve of
(
XT
){u} with initial condition (t1, (γ(t1), v[π1])).

Proof. Here we perturb the control first with π1 along γ and we obtain u[πs
1]. Then we perturb

this last control with the other perturbation data, π2, along γ[πs
1]. Then the superindeces of

the tangent vectors denote the curve along which the perturbation is made. As in the proof of
Proposition 3.4,

A = lim
s→0

(xi ◦ ϕt2
π12

)(s)− (xi ◦ ϕt2
π12

)(0)
s

= lim
s→0

(xi ◦ γ[πs
12])(t2)− (xi ◦ γ)(t2)

s

= lim
s→0

γi[πs
12](t2)− γi(t2)

s
= lim

s→0

(
γi[πs

12](t2)− γi[πs
1](t2)

s
+

γi[πs
1](t2)− γi(t2)

s

)
.

We understand γ[πs
12] as the result of perturbing γ[πs

1] with π2, and use the linear approximation
in Equation (3.4) for γ[πs

12](t2) and γ[πs
1](t2) according to Proposition 3.4.

ϕt2
π12

(s) = γ[πs
12](t2) = γ[πs

1](t2) + s v[π2]γ[πs
1] + o(s),
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γ[πs
1](t2) = γ(t2) + s V [π1]γ(t2) + o(s).

Then

A = lim
s→0

(
s(v[π2]γ[πs

1])i

s
+

s(V [π1]γ)i(t2)
s

)
= lim

s→0

(
(v[π2]γ[πs

1])i + (V [π1]γ)i(t2)
)

.

As γ[πs
1] depends on s and s tends to 0, A = L (v[π2]γ + V [π1]γ(t2))xi.

Considering identifications similar to the ones used to write Equation (3.4), we have

ϕt2
π12

(s) = γ(t2) + sv[π2] + sV [π1](t2) + o(s).

Now we define how the control changes when it is perturbed twice at the same time. If t1
is a Lebesgue time, π′1 = {t1, l′1, u′1} and π′′1 = {t1, l′′1 , u′′1} are perturbation data, then π11 =
{(t1, t1), (l′1, l′′1), (u′1, u

′′
1)} is a perturbation data given by

u[πs
11](t) =


u′1, t ∈ [t1 − (l′1 + l′′1)s, t1 − l′′1s],
u′′1, t ∈ [t1 − l′′1s, t1],
u(t), elsewhere.

for every s ∈ R+ small enough such that a < t1 − (l′1 + l′′1)s. Then γ[πs
11] : I −→ M is the

generalized integral curve of X{u[πs
11]} with initial condition (a, γ(a)). Observe that γ[π0

11](t) =
γ(t). Consider the curve ϕt1

π11
: [0, ε] → M , defined by ϕt1

π11
(s) = γ[πs

11](t1).

Proposition 3.8. Let t1 be a Lebesgue time. The vector tangent to ϕt1
π11

: [0, ε] → M at s = 0 is
v[π′1] + v[π′′1 ], where v[π′1] and v[π′′1 ] are the perturbation vectors of class I associated to π′1 and
π′′1 , respectively.

Proof. As in the proof of Proposition 3.4

A = lim
s→0

(xi ◦ ϕt1
π11

)(s)− (xi ◦ ϕt1
π11

)(0)
s

= lim
s→0

γi[πs
11](t1)− γi(t1)

s
.

As γ is an absolutely continuous integral curve of X{u}, γ̇(t) = X(γ(t), u(t)) at every Lebesgue
time. Then, we integrate

γi(t1)− γi(a) =
∫ t1

a
f i(γ(t), u(t))dt

and similarly for γ[πs
11] and u[πs

11]. Observe that γ[πs
11](t) = γ(t) and u[πs

11](t) = u(t) for
t ∈ [a, t1 − (l′1 + l′′1)s). Then,

A = lim
s→0

∫ t1
a f i(γ[πs

11](t), u[πs
11](t))dt−

∫ t1
a f i(γ(t), u(t))dt

s

= lim
s→0

∫ t1
t1−(l′1+l′′1 )s f i(γ[πs

11](t), u[πs
11](t))dt−

∫ t1
t1−(l′1+l′′1 )s f i(γ(t), u(t))dt

s

= lim
s→0

∫ t1−l′′1 s

t1−(l′1+l′′1 )s

(
f i(γ[π

′s
1 ](t), u′1)− f i(γ(t), u(t))

)
dt

s

+

∫ t1
t1−l′′1 s

[
f i(γ[πs

11](t), u
′′
1)− f i(γ(t), u(t))

]
dt

s

 .
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As t1 and t1 − l′′1s are Lebesgue times and a < t1 − (l′1 + l′′1)s for a small enough s, Equation
(A.17) is used. Now we have

A = lim
s→0

{
f i(γ[π

′s
1 ](t1 − l′′1s), u′1)l

′
1s− f i(γ(t1 − l′′1s), u(t1 − l′′1s))l′1s

s

+
f i(γ[πs

11](t1), u
′′
1)l

′′
1s− f i(γ(t1), u(t1))l′′1s

s

}
= lim

s→0

(
[f i(γ[π

′s
1 ](t1 − l′′1s), u′1)− f i(γ(t1 − l′′1s), u(t1 − l′′1s))] l′1

+ (f i(γ[πs
11](t1), u

′′
1)− f i(γ(t1), u(t1))) l′′1

)
.

As f i is continuous on M × U , we have

A =
(
f i
(
lim
s→0

γ[π
′s
1 ](t1 − l′′1s), u′1

)
− f i

(
lim
s→0

γ(t1 − l′′1s), lim
s→0

u(t1 − l′′1s)
))

l′1

+
(
f i
(
lim
s→0

γ[πs
11](t1), u

′′
1

)
− f i (γ(t1), u(t1))

)
l′′1 = [f i(γ(t1), u′1)− f i(γ(t1), u(t1))] l′1

+ (f i(γ(t1), u′′1)− f i(γ(t1), u(t1))) l′′1 = L
(
v[π′1] + v[π′′1 ]

)
(xi).

Analogous to the linear approximation (3.4), we have

ϕt1
π11

(s) = γ(t1) + sv[π′1] + sv[π′′1 ] + o(s).

If we perturb the control r times, π = {π1, . . . , πr}, with a < t1 ≤ . . . ≤ tr < b, then γ[πs](t)
is the generalized integral curve of X{u[πs]} with initial condition (a, γ(a)). Consider the curve
ϕt

π : [0, ε] → M for t ∈ [tr, b] given by ϕt
π(s) = γ[πs](t).

Corollary 3.9. For t ∈ [tr, b], the vector tangent to the curve ϕt
π : [0, ε] → M at s = 0 is

V [π1](t) + . . . + V [πr](t), where V [πi] : [ti, b] → TM is the generalized integral curve of
(
XT
){u}

with initial condition (ti, (γ(ti), v[πi])) for i = 1, . . . , r.

This corollary may be easily proved by induction using Propositions 3.4, 3.7, 3.8, where
all the possibilities of combination of perturbation data have been studied. If w is the vector
tangent to ϕt

π at s = 0, the perturbation data will be denoted by πw. Bearing in mind the
different combination of vectors in Definition D.2, we have the following definition.

Definition 3.10. The conic non–negative combinations of perturbation vectors of class I and
displacements by the flow of X{u} of perturbation vectors of class I are called perturbation
vectors of class II.

3.3.3 Perturbation cones

Considering all the elementary perturbation vectors, we define a closed convex cone at every
time containing at least all displacements of these vectors. To transport all the elementary
perturbation vectors, the pushforward of the flow of the vector field X{u} is used. See Appendix
B. Observe that the second comment after Definition 3.5 guarantees that the set of elementary
perturbation vectors is a cone.
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Definition 3.11. For t ∈ (a, b], the tangent perturbation cone Kt is the smallest closed con-
vex cone in Tγ(t)M that contains all the displacements by the flow of X{u} of all the elementary
perturbations vectors from all Lebesgue times τ smaller than t:

Kt = conv

 ⋃
a<τ≤t

τ is a Lebesgue time

(ΦX{u}
(t,τ) )∗(Vτ )

,

where Vτ denotes the set of elementary perturbation vectors at τ and conv(A) means the convex
hull of the set A.

To prove the following statement, we use results in Appendices D and E; precisely Proposition
D.4, D.5 and Corollary E.2.

Proposition 3.12. Let t ∈ (a, b]. If v is a nonzero vector in the interior of Kt, then there exists
ε > 0 such that for every s ∈ (0, ε) there are s′ > 0 and a perturbation of the control u[πs] such
that γ[πs](t) = γ(t) + s′v.

Proof. As v is interior to Kt, by Proposition D.5, item (d), v is in the interior of the cone

C = conv

 ⋃
a<τ≤t

τ is a Lebesgue time

(
ΦX{u}

(t,τ)

)
∗
Vτ

 ,

where Vτ is the cone of perturbation vectors of class I at time τ . Hence, v can be expressed as
a convex finite combination of perturbation vectors of class I by Proposition D.4.

Let (W,xi) be a local chart of M at γ(t). We suppose that the image of the local chart and
W are identified locally with an open set of Rm. Through the local chart we also identify Tγ(t)M
with Rm. We consider the affine hyperplane Π orthogonal to v at the endpoint of the vector v
and identify Π with Rm−1.

A “closed” cone denotes a closed cone without the vertex. Observe that such a cone is
not closed, that is why we use the inverted commas. We can choose a “closed” convex cone C̃
contained in the interior of C such that v lies in the interior of C̃ and 〈w, v〉 > 0 for every w ∈ C̃.
For example, we can consider a circular cone with axis v satisfying the two previous conditions,
as assumed from now on. Hence

Π ∩ C̃ = v + B(0, R),

where B(0, R) is the closure of an open ball in the subspace orthogonal to v, denoted by v⊥.
For r ∈ v⊥, we will write r instead of 0v + r as a vector in Rm.

Let us construct a diffeomorphism from the cone C̃ to a cylinder of Rm. If w ∈ C̃, the
orthogonal decomposition of w induced by v and v⊥ is

w =
〈w, v〉
‖v‖

v

‖v‖
+
(

w − 〈w, v〉
〈v, v〉

v

)
=
〈w, v〉
〈v, v〉

[
v +

(
〈v, v〉
〈w, v〉

w − v

)]
.

Observe that 〈v,v〉
〈w,v〉w − v is a vector in B(0, R) ⊂ v⊥. Considering the “closed” cone C̃ without

the vertex, we have the map

g : C̃ −→ R+ ×B(0, R)

w 7−→
(
〈w, v〉
〈v, v〉

,
〈v, v〉
〈w, v〉

w − v

)
= (s, r),
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that is a C∞ diffeomorphism with inverse given by

g−1 : R+ ×B(0, R) −→ C̃
(s, r) 7−→ s(v + r) = w.

Note that g and g−1 can be extended to an open cone, without the vertex, containing C̃, so the
condition that g is diffeomorphism is clear.

If we truncate C̃ by the affine hyperplane Π, we obtain a bounded convex set C̃v. The
restriction of g to C̃v is gv : C̃v → (0, 1]×B(0, R), that is also a C∞ diffeomorphism with inverse
g−1
v : (0, 1]×B(0, R) → C̃v.

If r ∈ B(0, R), then w0 = v+r is interior to C. Hence, associated to w0 we have a perturbation
πw0 of the control u. Let γ[πs

w0
] : I → M be the generalized integral curve of X{u[πs

w0
]} with

initial condition (a, γ(a)) and consider the map

Γ: [0, 1]×B(0, R) −→ M
(s, r) 7−→ Γ(s, r) = γ[πs

w0
](t)

(0, r) 7−→ Γ(0, r) = γ(t),

which is continuous because γ[πs
w0

](t) depends continuously on s and πs
w0

and

lim
(s,r)→(0,r0)

Γ(s, r) = γ(t) = Γ(0, r0).

Hence, for every ε > 0, there exist δ1, δ2 > 0 such that if |s| < δ1 and ‖r‖ < δ2, then ‖Γ(s, r)−
Γ(0, 0)‖ = ‖γ[πs

w0
](t)− γ(t)‖ < ε.

Taking ε such that B(γ(t), ε) is contained in W , there exist δ1, δ2 > 0 such that if |s| < δ1

and ‖r‖ < δ2, then γ[πs
w0

](t) ∈ W .

We consider now the map

∆: [0, δ1]×B(0, δ2) −→ Tγ(t)M ' Rm

(s, r) 7−→ ∆(s, r) = γ[πs
w0

](t)− γ(t)
(0, r) 7−→ ∆(0, r) = 0

that is continuous because lim(s,r)→(0,r0) ∆(s, r) = 0 = ∆(0, r0). Remember that we have iden-
tified W with Rm via the local chart. With this in mind and using Equation (3.4), we can
write

γ[πs
w0

](t)− γ(t) = s(v + r) + or(s),

where or(s) ∈ Rm.

We are going to show that, taking (s, r) in an adequate subset, ∆(s, r) lies in the interior of
the cone C̃.

Take a section of the cone through a plane containing v and w, and compute the distance
from the endpoint of w to the boundary of the cone C̃. This is given by

s (R− ‖r‖)√
1 +

(
R
‖v‖

)2
.

This is the maximum value for the radius of an open ball centered at the endpoint of s(v + r)
to be contained in C̃.

Define the function

Θ: [0, δ1]×B(0, δ2) −→ Rm

(s, r) 7−→
(
γ[πs

w0
](t)− γ(t)− s(v + r)

)
/s = or(s)/s

(0, r) 7−→ 0.
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which is continuous because lim(s,r)→(0,r0) Θ(s, r) = 0 = Θ(0, r0). Take

ε =
R− δ2√

1 +
(

R
‖v‖

)2
,

then there exist δ1, δ2 > 0 such that, if |s| < δ1 and ‖r‖ < δ2, then ‖Θ(s, r)‖ = ‖or(s)/s‖ < ε.

If (s, r) ∈ (0, δ1)×B(0, δ2), then

‖∆(s, r)− s(v + r)‖ = ‖s(v + r) + or(s)− s(v + r)‖ = ‖or(s)‖ ≤ sε < s
R− ‖r‖√
1 +

(
R
‖v‖

)2

since ‖r‖ ≤ δ2 < δ2 < R. Thus we conclude that ∆(s, r) = s(v + r) + or(s) is in the interior of
the cone C̃ for every (s, r) ∈ (0, δ1)×B(0, δ2).

Now, for s ∈ (0, δ1), we define the continuous mapping

Gs : B(0, δ2) −→ B(0, R) ⊂ Rm−1

r 7−→ Gs(r) = (π2 ◦ g ◦∆) (s, r),
(3.5)

where π2 : R+ ×B(0, R) → B(0, R), π2(s, r) = r. Observe that for r0 ∈ B(0, δ2) we have

lim
(s,r)→(0,r0)

Gs(r) = lim
(s,r)→(0,r0)

[
〈v, v〉

s〈v, v〉+ 〈o(s), v〉
(s(v + r) + o(s))− v

]
= r

and
(g ◦∆)(s, r) = g(γ[πs

w0
](t)− γ(t)) = g(s(v + r) + or(s)) = (s′, r′). (3.6)

Suppose that there exists r ∈ B(0, R) such that Gs(r) = 0. Then applying g−1 to (3.6), we have

∆(s, r) = γ[πs
w0

](t)− γ(t) = g−1(s′, 0) = s′v. (3.7)

Hence, to conclude the proof we need to show that there exists r with Gs(r) = 0 for s small
enough. To apply Corollary E.2, there must exist r′ ∈ B(0, δ2) such that ‖Gs(r)− r‖ < ‖r− r′‖
for every r ∈ ∂

(
B(0, δ2)

)
. We will show that the condition is fulfilled for r′ = 0.

Consider the mapping

G : [0, δ1]×B(0, δ2) −→ B(0, R) ⊂ Rm−1

(s, r) 7−→ G(s, r) = Gs(r)− r
(0, r) 7−→ G(0, r) = 0.

For r0 ∈ B(0, δ2), we have lim(s,r)→(0,r0) G(s, r) = lim(s,r)→(0,r0) Gs(r) − r = 0. Thus G is
continuous.

Given r0 ∈ ∂
(
B(0, δ2)

)
, take ε = δ2/2, then there exist δ0(0, r0), δ1(0, r0) > 0 such

that if |s| < δ0(0, r0) and ‖r − r0‖ < δ1(0, r0), then ‖G(s, r) − G(0, r0)‖ < δ2/2. Hence{
B(r0, δ1(0, r0)) | r0 ∈ ∂

(
B(0, δ2)

)}
is an open covering of the boundary of B(0, δ2); ∂B(0, δ2).

As this is a compact set, there exists a finite subcovering,

{B(r1, δ1(0, r1)), . . . , B(rl, δ(0, rl))}.
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Take δ as the minimum of {δ0(0, r1), . . . , δ0(0, rl)}. Let us see that, for every (s, r) ∈ [0, δ] ×
∂B(0, δ2), ‖Gs(r)− r‖ < ‖r‖. As r is in an open set of the finite subcovering,

‖G(s, r)‖ = ‖Gs(r)− r‖ <
δ2

2
< δ2 = ‖r‖.

Hence, using Corollary E.2, for every s ∈ (0, δ), the set Gs(B(0, δ2)) covers the origin; that is,
there exists r ∈ B(0, δ2) such that

Gs(r) = (π2 ◦ g ◦∆)(s, r) = 0.

Then, because of the definition of the mapping Gs in Equation (3.5) and Equations (3.6) and
(3.7), there exists s′ ∈ R+ such that

γ[πs
w0

](t) = γ(t) + s′v.

To finish the proof we only need to take πs = πs
w0

. In other words, we have a trajectory coming
from a perturbation of the control that meets the ray generated by v, as wanted.

3.4 Pontryagin’s Maximum Principle in the symplectic formalism for the
optimal control problem

In this section, the OCP is transformed into a Hamiltonian problem that will allow us to state
Pontryagin’s Maximum Principle.

Given the OCP (Q,U,X, F, I, xa, xb) and the ÔCP (Q̂, U, X̂, I, xa, xb), let us consider the
cotangent bundle T ∗Q̂ with its natural symplectic structure that will be denoted by ω. If
(x̂, p̂) = (x0, x, p0, p) = (x0, x1, . . . , xm, p0, p1, . . . , pm) are local natural coordinates on T ∗Q̂, the
form ω has as its local expression ω = dx0 ∧ dp0 + dxi ∧ dpi.

For each u ∈ U , Hu : T ∗Q̂ → R is the Hamiltonian function defined by

Hu(p̂) = H(p̂, u) = 〈p̂, X̂(x̂, u)〉 = p0F (x, u) +
m∑

i=1

pif
i(x, u),

where p̂ ∈ T ∗bx Q̂. The tuple (T ∗Q̂, ω, Hu) is a Hamiltonian system. Using the notation in (2.2),
the associated Hamiltonian vector field Y {u} satisfies the equation

i(Y {u})ω = dHu.

Thus we get a family of Hamiltonian systems parameterized by u, H : T ∗Q̂ × U → R, and the
associated Hamiltonian vector field Y : T ∗Q̂ × U → T (T ∗Q̂) which is a vector field along the
projection π̂1 : T ∗Q̂× U → T ∗Q̂. Its local expression is

Y (p̂, u) =
(

F (x, u)
∂

∂x0
+ f i(x, u)

∂

∂xi
+ 0

∂

∂p0
+
(
−p0

∂F

∂xi
(x, u)− pj

∂f j

∂xi
(x, u)

)
∂

∂pi

)
(bx,bp,u)

.

It should be noted that Y = X̂T ∗
is the cotangent lift of X̂. See Appendix B.3 for definition

and properties of the cotangent lift.

Given a curve (λ̂, u) : I → T ∗Q̂ × U such that it is absolutely continuous on T ∗Q̂, it is
measurable and bounded on U , and γ̂ = π bQ ◦ λ̂; if π bQ : T ∗Q̂ → Q̂ is the natural projection, the
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previous elements come together in the following diagram:

T (T ∗Q̂)

τT∗ bQ
��

R T ∗Q̂× U
Hoo

X̂T∗ 99ssssssssss π̂1 // T ∗Q̂

π bQ
��

I

(σ̂, u)
OO

σ̂
99rrrrrrrrrrrr γ̂ //

γ

&&LLLLLLLLLLLLLL Q̂

π2

��
Q

Statement 3.13. (Hamiltonian Problem, HP) Given the OCP (Q,U,X, F, I, xa, xb), and
the equivalent ÔCP (Q̂, U, X̂, I, xa, xb), consider the following problem.

Find (σ̂∗, u∗) such that

(1) γ̂∗(a) = (0, xa) and γ∗(b) = xb, if γ̂∗ = π bQ ◦ σ̂∗, γ∗ = π2 ◦ γ̂∗.

(2) ˙̂σ∗(t) = X̂T ∗
(σ̂∗(t), u∗(t)), t ∈ I.

The tuple (T ∗Q̂, U, X̂T ∗
, I, xa, xb) denotes the Hamiltonian problem as it has just been de-

fined and the elements satisfy the same properties as in §2.

Comments: The Hamiltonian problem satisfies analogous conditions to those satisfied by the
OCP and the ÔCP defined in §3.1 and §3.2 respectively.

1. Given (σ̂, u), the function u : I → U allows us to construct a time–dependent vector field
on T ∗Q̂, (X̂T ∗

){u} : T ∗Q̂× I → T (T ∗Q̂), defined by

(X̂T ∗
){u}(x̂, p̂, t) = X̂T ∗

(x̂, p̂, u(t)).

Condition (2) shows that σ̂∗ is an integral curve of (X̂T ∗
){u

∗}.

2. The vector field (X̂T ∗
){u} is π bQ–projectable and projects onto X̂{u}. Thus if σ̂ is an

integral curve of (X̂T ∗
){u}, γ̂ = π bQ ◦ σ̂ is an integral curve of X̂{u}.

3. Locally, conditions (1) and (2) are equivalent to the fact that the curve (σ̂, u) satisfies the
Hamilton equations of the system (T ∗M̂, ω,Hu),

ẋ0 =
∂Hu

∂p0
= F

ẋi =
∂Hu

∂pi
= f i

ṗ0 = −∂Hu

∂x0
= 0 ⇒ p0 = ct (3.8)

ṗi = −∂Hu

∂xi
= −p0

∂F

∂xi
− pj

∂f j

∂xi
, (3.9)

and satisfies the conditions γ̂(a) = (0, xa), γ(b) = xb.

In the literature of optimal control, the system of differential equations given by Equations
(3.8), (3.9) is called the adjoint system. In differential geometry, the adjoint system is the
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differential equations satisfied by the fiber coordinates of an integral curve of the cotangent
lift of a vector field on Q. See Appendix B.3 for more details.

Note that there is no initial condition for p̂ = (p0, p1, . . . , pm), hence HP is not a Cauchy
problem.

Comment: So far we have considered a fixed control u ∈ U . Therefore we have been working
with a family of Hamiltonian systems on the manifold (T ∗Q̂, ω) given by the Hamiltonians
{Hu|u ∈ U}.

Given u : I → U , then we consider the Hamiltonian Hu(t). The equation of the Hamiltonian
vector field for the Hamiltonian system (T ∗Q̂, ω, Hu(t)) is

i(Y {u(t)})ω = d bQHu(t),

where d bQ is the exterior differential on the manifold T ∗Q̂. Observe that we have studied the

system defined by (T ∗Q̂, ω, Hu(t)) as an autonomous system by fixing the time t. The Hamilto-
nian vector field obtained Y {u(t)} is a time–dependent vector field whose integral curves satisfy
the equation

˙̂σ(t) = Y {u(t)}(σ̂(t)), t ∈ I. (3.10)

Observe that Y {u(t)} = (X̂T ∗
){u(t)}.

Now we are ready to state Pontryagin’s Maximum Principle that provides the necessary
conditions, which are in general not sufficient, to find solutions of the optimal control problem.

Theorem 3.14. (Pontryagin’s Maximum Principle, PMP)
If (γ̂∗, u∗) : I → Q̂×U is a solution of the extended optimal control problem, Statement 3.2, such
that γ̂∗ is absolutely continuous and u∗ is measurable and bounded, then there exists (σ̂∗, u∗) : I →
T ∗Q̂× U such that:

1. it is a solution of the Hamiltonian problem, that is, it satisfies Equation (3.10) and the
initial conditions γ̂∗(a) = (0, xa) and γ∗(b) = xb, if γ∗ = π2 ◦ γ̂∗;

2. γ̂∗ = π bQ ◦ σ̂∗;

3. (a) H(σ̂∗(t), u∗(t)) = supu∈U H(σ̂∗(t), u) almost everywhere;
(b) supu∈U H(σ̂∗(t), u) is constant everywhere;

(c) σ̂∗(t) 6= 0 ∈ T ∗bγ∗(t)Q̂ for each t ∈ [a, b];

(d) σ∗0(t) is constant and σ∗0(t) ≤ 0.

Comments:

1. There exists an abuse of notation between σ̂(t) ∈ T ∗M̂ and σ̂(t) ∈ T ∗bγ∗(t)M̂ . We assume
that the meaning of σ̂ in each situation will be clear from the context.

2. Condition (2) is immediately satisfied because σ̂∗ is a covector along γ̂∗.

3. Conditions (3a) and (3b) imply that the Hamiltonian function is constant almost every-
where for t ∈ [a, b].

4. In item (3a), if U is a closed set, then the maximum of the Hamiltonian over the controls
is considered instead of the the supremum over the controls. But in condition (3b) we can
always consider the maximum, instead of the supremum, because item (3a) guarantees
that the supremum of the Hamiltonian is reached in the optimal curve. Thus, from now
on and according to the classical literature, we refer to the assertion (3a) as the condition
of maximization of the Hamiltonian over the controls.
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5. Condition (3c) implies that σ∗0(t) 6= 0 or σ∗(t) 6= 0 ∈ T ∗
γ∗(t)M for each t ∈ [a, b]. Locally

the condition (3c) states that for each t ∈ [a, b] there exists a coordinate of σ̂∗(t) nonzero,
(pi ◦ σ̂∗)(t) = σ∗i (t) 6= 0.

6. From the Hamilton’s equations of the system (T ∗M̂, ω,Hu(t)), it is concluded that σ0 is
constant along the integral curves of (X̂T ∗

){u(t)}, since ṗ0 = 0. Hence the first result in
(3d) is immediate for every integral curve of (X̂T ∗

){u(t)}. As σ∗0 is constant, σ̂∗ may be
normalized without loss of generality. Thus it is assumed that either σ∗0 = 0 or σ∗0 = −1
because of the second result in (3d).

7. Pontryagin’s Maximum Principle only guarantees that given a solution of ÔCP there exists
a solution of HP . Hence, in principle, both problems are not equivalent.

Observe that Maximum Principle guarantees the existence of a covector along the optimal
curve, but it does not say anything about the uniqueness of the covector. Indeed, this covector
may not be unique. Depending on the covector we associate with the optimal curves, different
kind of curves can be defined.

Definition 3.15. A curve (γ̂, u) : [a, b] → Q̂× U for ÔCP is

1. an extremal if there exist σ̂ : [a, b] → T ∗Q̂ such that γ̂ = π
T bQ ◦ σ̂ and (σ̂, u) satisfies the

necessary conditions of PMP;

2. a normal extremal if it is an extremal with σ0 = −1 and σ̂ is called a normal lift or
momenta;

3. an abnormal extremal if it is an extremal with σ0 = 0 and σ̂ is called an abnormal
lift or momenta;

4. a strictly abnormal extremal if it is not a normal extremal, but it is abnormal;

5. a strictly normal extremal if it is not a abnormal extremal, but it is normal.

In [2, 73] there are some examples of optimal control problems whose solutions are searched
using Pontryagin’s Maximum Principle.

Observe that if γ̂ : I → Q̂ is an integral curve of a vector field, there always exists a lift of γ̂
to a curve σ̂ : I → T ∗Q̂, given an initial condition for the cofibers, which is an integral curve of
the cotangent lift of the given vector field on Q̂. Analogously, if the system is given by a vector
field along the projection π̂ : Q̂× U → Q̂.

Therefore, the items 1 and 2 in Theorem 3.14 do not provide any information related with
the optimality. They only ask for the fulfilment of a final condition in the integral curve. The
accomplishment of this depends on the accessibility of the problem, see [23, 63].

The real contribution of PMP is the third item related with the optimality through the
maximization of the Hamiltonian, that will be only satisfied if the initial conditions for the fibers
are chosen suitably. This is the key element of the proof of Pontryagin’s Maximum Principle.
In other words, we can always find a cotangent lift of an integral curve such that conditions 1
and 2 are satisfied under the assumption of accessibility, but it is not guaranteed the fulfilment
of conditions in assertion 3 in Theorem 3.14.

If we write the Hamiltonian function for the abnormal and the normal case, the difference is
that the cost function does not play any role in the Hamiltonian for abnormal extremals. That
is why it is said the abnormal extremals only depend on the geometry of the control system.
But to determine the optimality of the abnormal extremals, the cost function is essential. In
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fact, for the same control system different optimal control problems can be stated depending on
the cost function, in such a way that the abnormal extremals are minimizers only for some of
the problems.

To conclude, the strict abnormality characterizes the abnormal extremals that are not nor-
mal. An extremal is not normal when there does not exist any covector that satisfies Hamilton’s
equations for normality. Thus it is necessary to know the cost function in order to prove that
there exists only one kind of lift.

4 Proof of Pontryagin’s Maximum Principle for fixed time and
fixed endpoints

To prove Pontryagin’s Maximum Principle it is necessary to use analytic results about absolute
continuity and lower semicontinuity for real functions, and properties of convex cones. For the
details see Appendix A and Appendix D and references therein. The reader is referred to §3.3
for results on perturbations of a trajectory in a control system.

In the literature of optimal control, the proof of the Maximum Principle has been discussed
taking into account varying hypotheses, [2, 8, 18, 44, 70, 71, 72]. Most authors believe and
justify that the origin of this Principle is the calculus of variations, see [76] for instance.

Proof. (Theorem 3.14: Pontryagin’s Maximum Principle, PMP)
1. As (γ̂∗, u∗) is a solution of ÔCP , if τ is in [a, b], for every initial condition σ̂τ in T ∗bγ∗(τ)Q̂, we

have a solution of HP , (γ̂∗, σ̂) : [a, b] → T ∗Q̂, satisfying that initial condition. The covector σ̂τ

must be chosen conveniently so that the remaining conditions of the PMP are satisfied.

According to §3.3, we construct the tangent perturbation cone K̂b in Tbγ∗(b)Q̂ that contains all
tangent vectors associated with perturbations of the trajectory γ̂∗ corresponding to variations
of u∗; see Definition 3.11.

Let us consider the vector (−1,0)bγ∗(b) ∈ Tbγ∗(b)Q̂, where the zero in bold emphasizes that 0
is a vector in Tγ∗(b)M . The vector (−1,0) has the following properties:

1. the variation of x0(t) =
∫ t
a F (γ∗(s), u∗(s))ds along (−1,0) is negative;

2. it is not interior to K̂b.

Let us prove the second assertion. Take a local chart at γ̂∗(b) and work on the image of
the local chart, in Rm+1, without changing the notation.

If (−1,0)bγ∗(b) was interior to K̂b, by Proposition 3.12 there would exist a positive number
ε, such that for every s ∈ (0, ε), there would exist a positive number s′, close to s, and a
perturbation of the control u[πs] such that

γ̂[πs](b) = (γ0[πs](b), γ[πs](b)) = γ̂∗(b) + s′(−1,0).

For this perturbed trajectory we have

γ0[πs](b) < γ∗
0
(b) and γ[πs](b) = γ∗(b).

Hence there would be a trajectory, γ̂[πs], from γ∗(a) to γ∗(b) with less cost than γ̂∗. Hence
γ̂∗ would not be optimal. In other words, (−1,0)bγ∗(b) is the direction of decreasing of the
functional to be minimized in the extended optimal control problem.
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The second property implies that K̂b cannot be equal to Tbγ∗(b)Q̂. As (−1,0)bγ∗(b) is not interior
to K̂b, there exist a separating hyperplane of K̂b and (−1,0)bγ∗(b) by Proposition D.15; that
is, there exists a nonzero covector determining a separating hyperplane. Let σ̂b ∈ T ∗bγ∗(b)Q̂ be
nonzero such that ker σ̂b is a separating hyperplane satisfying

〈σ̂b, (−1,0)〉 ≥ 0,

〈σ̂b, v̂b〉 ≤ 0 ∀ v̂b ∈ K̂b.

Observe that if σ̂b = 0 ∈ T ∗bγ∗(b)Q̂, ker σ̂b does not determine a hyperplane, but the whole space

T ∗bγ∗(b)Q̂.

Given the initial condition σ̂b ∈ T ∗bγ∗(b)Q̂, there exists only one integral curve σ̂∗ of (X̂T ∗
){u

∗}

such that σ̂∗(b) = σ̂b. Hence (σ̂∗, u∗) is a solution of HP .

2. Obviously, by construction, γ̂∗ = π bQ ◦ σ̂∗.

Now we prove that σ̂∗, the solution of HP , satisfies the remaining conditions of the PMP.

(3a) H(σ̂∗(t), u∗(t)) = supu∈U H(σ̂∗(t), u) almost everywhere.

We are going to prove the statement for every Lebesgue time, hence it will be true almost
everywhere, see Appendix A for more details. Suppose that there exists a control ũ : I → U and
a Lebesgue time t1 such that u∗ does not give the supremum of the Hamiltonian at t1; that is,

H(σ̂∗(t1), ũ(t1)) > H(σ̂∗(t1), u∗(t1)).

As H(p̂, u) = 〈p̂, X̂(x̂, u)〉,

〈σ̂∗(t1), X̂(γ̂∗(t1), ũ(t1))− X̂(γ̂∗(t1), u∗(t1))〉 > 0;

that is, 〈σ̂∗(t1), v̂[π1]〉 > 0 where v̂[π1] = X̂(γ̂∗(t1), ũ(t1)) − X̂(γ̂∗(t1), u∗(t1)) in K̂t1 ⊂ Tbγ∗(t1)Q̂
is the elementary perturbation vector associated with the perturbation data π1 = {t1, 1, ũ(t1)}
by Proposition 3.4.

Let V̂ [π1] : [t1, b] → TQ̂ be the integral curve of (X̂T ){u
∗} with (t1, γ̂∗(t1), v̂[π1]) as initial

condition. For σ̂∗, solution of HP , the continuous function 〈σ̂∗, V̂ [π1]〉 : [t1, b] → R is constant
everywhere by Proposition B.5. Hence 〈σ̂∗(t1), v̂[π1]〉 > 0 implies that 〈σ̂b, V̂ [π1](b)〉 > 0, which
is a contradiction with 〈σ̂b, v̂b〉 ≤ 0 for every v̂b ∈ K̂b, since V̂ [π1](b) ∈ K̂b.

Therefore,
H(σ̂∗(t), u∗(t)) = sup

u∈U
H(σ̂∗(t), u)

at every Lebesgue time on [a, b], so almost everywhere.

(3b) supu∈U H(σ̂∗(t), u) is constant everywhere.

In fact, because of (3a) we know that the supremum is achieved along the optimal curve, so
at the end we are going to prove that maxu∈U H(λ̂∗(t), u) is constant everywhere. To simplify
the notation we define the function

M◦ σ̂∗ : I −→ R
t 7−→ M(σ̂∗(t)) = supu∈U H(σ̂∗(t), u).

In order to prove (3b), it is enough to see that M(σ̂∗(t)) is constant everywhere.
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First let us see that M◦ σ̂∗ is lower semicontinuous on I. See Appendix A for details of this
property. As M(σ̂∗(t)) is the supremum of the Hamiltonian function with respect to control,
for every ε > 0, there exists a control uM : I → U such that

H(σ̂∗(t), uM(t)) ≥M(σ̂∗(t))− ε

2
(4.11)

everywhere.

For each constant control ũ ∈ U , Heu ◦ σ̂∗ = H(σ̂∗, ũ) : I → R is continuous on I. Hence for
every t0 ∈ I and ε > 0, there exists δ > 0 such that | t− t0 |< δ, we have

| Heu(σ̂∗(t))−Heu(σ̂∗(t0)) |<
ε

2
.

If ũ = uM(t0), then using the continuity of Heu ◦ σ̂∗

M(σ̂∗(t)) = sup
u∈U

H(σ̂∗(t), u) ≥ H(σ̂∗(t), uM(t0)) ≥

≥ H(σ̂∗(t0), uM(t0))−
ε

2
≥M(σ̂∗(t0))− ε.

The last inequality is true by evaluating Equation (4.11) at t0. Hence M◦ σ̂∗ is lower semicon-
tinuous at every t0 ∈ I; that is, M◦ σ̂∗ is lower semicontinuous on I.

The control u∗ is bounded, that means Im u∗ is contained in a compact set D ⊂ U . Let us
define a new function

MD : T ∗Q̂ −→ R
β 7−→ MD(β) = supeu∈D H(β, ũ).

As H(β, · ) : D → R, ũ 7→ H(β, ũ) is continuous by hypothesis and D is compact, for every
β ∈ T ∗Q̂ there exists a control w̃β that gives us the maximum of H(β, ũ)

MD(β) = supeu∈D
H(β, ũ) = H(β, w̃β). (4.12)

HenceMD is well–defined on T ∗Q̂. The following sketch explains in a compact way the necessary
steps to prove that M◦ σ∗ is constant everywhere. In this sketch, the figures in bold refer to
statements which are going to be proved in the next paragraphs and a.c. stands for absolutely
continuous and a.e. for almost everywhere.

M◦ σ̂∗ is lower semicontinuous on I

Heu ∈ C1(T ∗Q̂)
⇓1

Heu is locally Lipschitz ∀ ũ ∈ D
⇓2

MD is locally Lipschitz on Imσ̂∗

σ̂∗ is a.c.

⇒3 MD ◦ σ̂∗ is a.c. ⇒MD ◦ σ̂∗ is continuous

4MD(σ̂∗(t)) ≤M(σ̂∗(t)), ∀ t ∈ [a, b]
5MD(σ̂∗(t)) = M(σ̂∗(t)) a.e.



⇒6

MD ◦ σ̂∗ is a.c.
7MD ◦ σ̂∗ has zero derivative

}
⇒8

⇒6 (A. 15)MD(σ̂∗(t)) = M(σ̂∗(t)) ∀ t ∈ [a, b]
⇒8 (A. 16)MD(σ̂∗(t)) is constant ∀ t ∈ [a, b]

}
⇒9 M(σ̂∗(t)) is constant ∀ t ∈ [a, b]
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1. Heu ∈ C1(T ∗Q̂) ⇒ Heu is locally Lipschitz ∀ ũ ∈ D.

The Lipschitzian property applies to functions defined on a metric space. As the property
we want to prove is local, we define the distance on a local chart as is explained in Appendix
A. For every β ∈ T ∗Q̂, let (Vβ, φ) be a local chart centered at β such that φ(β) = 0 and
φ(Vβ) = B, where B is an open ball centered at 0 ∈ R2m+2. If β1 and β2 are in Vβ, define
dφ(β1, β2) = d(φ(β1), φ(β2)) where d is the Euclidean distance in R2m+2.

For every β in T ∗Q̂, we get an open neighbourhood Vβ using the local chart (Vβ , φ). As Heu
is C1(T ∗Q̂) and ũ lies in the compact set D, by the Mean Value Theorem for every β in T ∗Q̂
there exists an open neighbourhood Vβ such that |Heu(β1)−Heu(β2)| < Kβdφ(β1, β2) where Kβ

does not depend on the control ũ. Thus Heu is locally Lipschitz on T ∗Q̂. Moreover, the Lipschitz
constant and the open neighbourhood Vβ do not depend on the control since ũ is in a compact
set.

2. Heu is locally Lipschitz ∀ ũ ∈ D ⇒MD is locally Lipschitz on Im σ̂∗.

Let β be in Im σ̂∗, there exists an open convex neighbourhood Vβ such that

|Heu(β1)−Heu(β2)| < Kβd(β1, β2)

for every ũ in D and β1, β2 in Vβ. If w̃1, w̃2 are the controls in D maximizing H(β1, ũ) and
H(β2, ũ), respectively, then

H(β1, w̃2) ≤ H(β1, w̃1),

H(β2, w̃1) ≤ H(β2, w̃2).

Moreover, H ew1 and H ew2 are Lipschitz on Vβ since the Lipschitz constant and the neighbourhood
is independent of the control. Then using the last inequalities

−Kβd(β1, β2) ≤ H ew2(β1)−H ew2(β2) ≤ H ew1(β1)−H ew2(β2)

≤ H ew1(β1)−H ew1(β2) ≤ Kβd(β1, β2).

Observe that by Equation (4.12), H ew1(β1)−H ew2(β2) = MD(β1)−MD(β2). Hence

|MD(β1)−MD(β2)| ≤ Kβd(β1, β2), ∀ β1, β2 ∈ Vβ; (4.13)

that is, MD is locally Lipschitz on Im σ̂∗. As σ̂∗ is absolutely continuous, Im σ̂∗ is compact.
Thus we may choose a Lipschitz constant independent of the point β. Hence

|MD(β1)−MD(β2)| ≤ Kd(β1, β2), ∀ β1, β2 ∈ Vβ.

3. MD is locally Lipschitz on Im σ̂∗ and σ̂∗ is absolutely continuous ⇒MD ◦ σ̂∗ : I → R is
absolutely continuous ⇒MD ◦ σ̂∗ : I → R is continuous.

For every t ∈ I, let us consider the neighbourhood Vbσ∗(t) where Equation (4.13) is satisfied.
As Im σ̂∗ is a compact set,

• there exists a finite open subcovering Vbσ∗(t1), . . . , Vbσ∗(tr) of {Vbσ∗(t) ; t ∈ I}, and

• there exists a Lebesgue number l of the subcovering; that is, for every two points in an
open ball of diameter l there exists an open set of the finite subcovering containing both
points.

For the Lebesgue number l, by the uniform continuity of σ̂∗, there exists a δl > 0 such that for
each t1, t2 in I with |t2 − t1| < δl, then d(σ̂∗(t2), σ̂∗(t1)) < l. Thus there exists an open set of
the finite subcovering containing σ̂∗(t1) and σ̂∗(t2).

On the other hand, taken ε > 0 the absolutely continuity of σ̂∗ determines a δε > 0.
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To prove the absolute continuity of MD ◦ σ̂∗, take δ = min{δl, δε}. Then, for every finite
number of nonoverlapping subintervals (ti1 , ti2) of I such that

∑n
i=1 |ti2 − ti1 | < δ,

n∑
i=1

|MD(σ̂∗(ti2))−MD(σ̂∗(ti1))| ≤
n∑

i=1

Kd(σ̂∗(ti2), σ̂
∗(ti1)) ≤ Kε.

In the first step we use that δ < δl to guarantee that σ̂∗(ti2) and σ̂∗(ti1) are contained in the
same open set of the finite subcovering of Im σ̂∗. That allows us to use the property of being
locally Lipschitzian. Secondly, we use that δ < δε to apply the absolute continuity of σ̂∗.

As MD ◦ σ̂∗ is absolutely continuous on I, MD ◦ σ̂∗ is continuous on I.

4. MD(σ̂∗(t)) ≤M(σ̂∗(t)) everywhere.

Observe that

MD(σ̂∗(t)) = sup
u∈D

H(σ̂∗(t), u) ≤ sup
u∈U

H(σ̂∗(t), u) = M(σ̂∗(t)),

for each t ∈ I.

5. M(σ̂∗(t)) = MD(σ̂∗(t)) almost everywhere.

For each t ∈ I there exists a control w(t) maximizing H(σ̂∗(t), u) over the controls in D
because of condition (3a),

MD(σ̂∗(t)) = sup
u∈D

H(σ̂∗(t), u) = H(σ̂∗(t), w(t)).

As u∗(t) ∈ D for each t ∈ I,

sup
u∈D

H(σ̂∗(t), u) = sup
u∈U

H(σ̂∗(t), u) = M(σ̂∗(t)) = H(σ̂∗(t), u∗(t))

almost everywhere by (3a). Thus M(σ̂∗(t)) = MD(σ̂∗(t)) a.e..

6. Applying Proposition A.7, we have MD(σ̂∗(t)) = M(σ̂∗(t)) everywhere on I, because
MD ◦ σ̂∗ is continuous on I, M◦ σ̂∗ is lower semicontinuous, MD(σ̂∗(t)) ≤M(σ̂∗(t)) everywhere
and MD(σ̂∗(t)) = M(σ̂∗(t)) almost everywhere.

7. MD ◦ σ̂∗ has zero derivative.

As MD ◦ σ̂∗ is absolutely continuous on I, by Corollary A.4 it has a derivative almost
everywhere. As the intersection of two sets of full measure is not empty, see Appendix A, there
exists a t0 ∈ I such that MD ◦ σ̂∗ is derivable at t0 and MD(σ̂∗(t0)) = H(σ̂∗(t0), u∗(t0)). For
each t 6= t0, by the definition of MD, we have

MD(σ̂∗(t)) = sup
u∈D

H(σ̂∗(t), u) ≥ H(σ̂∗(t), u∗(t0))

because u∗(t0) ∈ D. Thus MD(σ̂∗(t))−MD(σ̂∗(t0)) ≥ H(σ̂∗(t), u∗(t0))−H(σ̂∗(t0), u∗(t0)).

If t− t0 > 0,

MD(σ̂∗(t))−MD(σ̂∗(t0))
t− t0

≥ H(σ̂∗(t), u∗(t0))−H(σ̂∗(t0), u∗(t0))
t− t0

.

Let us compute the right derivative of MD ◦ σ̂∗ at t0

d(MD ◦ σ̂∗)
dt

∣∣∣∣
t=t+0

= lim
t→t+0

MD(σ̂∗(t))−MD(σ̂∗(t0))
t− t0

≥ lim
t→t+0

Hu∗(t0)(σ̂∗(t))−Hu∗(t0)(σ̂∗(t0))
t− t0

= L bXT∗{u∗(t0)}bσ∗(t0)

Hu∗(t0) = 0
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since i
(
X̂T ∗{u∗(t0)}bσ∗(t0)

)
ω =

(
dHu∗(t0)

)bσ∗(t0)
.

Similarly, if t− t0 < 0,
d(MD ◦ σ̂∗)

dt

∣∣∣∣
t=t−0

≤ 0.

Hence the derivative of MD ◦ σ̂∗ is zero almost everywhere.

8. Applying Theorem A.5, MD ◦ σ̂∗ is constant everywhere, because MD ◦ σ̂∗ is absolutely
continuous.

9. As MD(σ̂∗(t)) and M(σ̂∗(t)) coincide everywhere, M◦ σ̂∗ is constant everywhere on I.

(3c) σ̂∗(t) 6= 0 ∈ T ∗bγ∗(t)Q̂ for each t ∈ [a, b].

Let us suppose that there exists τ ∈ [a, b] such that σ̂∗(τ) = 0 ∈ T ∗bγ∗(τ)Q̂. As σ̂∗ is a

generalized integral curve of (X̂T ∗
){u

∗}, a linear vector field over X̂, we have σ̂∗(t) = 0 for each
t ∈ [a, b]. As there exists at least a time such that σ̂∗(τ) 6= 0, we arrive at a contradiction. Hence
σ̂∗(t) 6= 0 for each t ∈ [a, b].

(3d) σ∗0(t) is constant, σ∗0(t) ≤ 0.

From the equations satisfied by the generalized integral curves of (X̂T ∗
){u

∗}, we have p0 is
constant. It was seen that 〈σ̂b, (−1,0)〉 ≥ 0 is equivalent to (p0 ◦ σ̂∗)(b) = σ0(b) ≤ 0. Hence
σ0 ≤ 0 for each t ∈ [a, b].

Comment: As σ̂b is determined up to multiply by a positive real number, we may assume that
σ0 ∈ {−1, 0}.

The way in which perturbations have been used in this proof gives some clue concerning the
fact that the tangent perturbation cone is understood as an approximation of the reachable set
defined in Appendix C. A precise meaning of this approximation is explained in Appendix C.

The covector in the proof has been chosen such that

〈σ̂b, (−1,0)〉 ≥ 0,

〈σ̂b, v̂b〉 ≤ 0 ∀ v̂b ∈ K̂b.

In the abnormal case σ0 = 0 and the first inequality is satisfied with equality. Thus the covector
is contained in the separating hyperplane. It would be interesting to determine geometrically
what else must happen in order to have abnormal minimizers.

5 Pontryagin’s Maximum Principle for nonfixed time and non-
fixed endpoints

Now, that Pontryagin’s Maximum Principle has been proved for time and endpoints fixed, let
us state the different problems related to Pontryagin’s Maximum Principle with nonfixed time
and nonfixed endpoints.

5.1 Statement of the optimal control problem with time and endpoints non-
fixed

We consider the elements Q, U , X, F , S and π2 with the same properties as in §2, §3.1. Let Sa

and Sf be submanifolds of Q.
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Statement 5.1. (Free Optimal Control Problem, FOCP) Given the elements Q, U , X,
F , and the disjoint submanifolds of Q, Sa and Sf , consider the following problem.

Find b ∈ R and (γ∗, u∗) : [a, b] → Q× U such that

(1) endpoint conditions: γ∗(a) ∈ Sa, γ∗(b) ∈ Sf ,

(2) γ∗ is an integral curve of X{u∗}: γ̇∗ = X{u∗} ◦ (γ∗, id), and

(3) minimal condition: S[γ∗, u∗] =
∫ b
a F (γ∗(t), u∗(t))dt is minimum over all curves (γ, u)

satisfying (1) and (2).

The tuple (Q,U,X, F, Sa, Sf ) denotes the free optimal control problem.

Statement 5.2. (Extended Free Optimal Control Problem, F̂OCP) Given the FOCP ,
(Q,U,X, F, Sa, Sf ), and the elements Q̂ and X̂ defined in §3.2, consider the following problem.

Find b ∈ R and (γ̂∗, u∗) : [a, b] → Q̂× U , with γ∗ = π2 ◦ γ̂∗, such that

(1) endpoint conditions: γ̂∗(a) ∈ {0} × Sa, γ∗(b) ∈ Sf ,

(2) γ̂∗ is an integral curve of X̂{u∗}: ˙̂γ∗ = X̂{u∗} ◦ (γ̂∗, id), and

(3) minimal condition: γ∗
0
(b) is minimum over all curves (γ̂, u) satisfying (1) and (2).

The tuple (Q̂, U, X̂, Sa, Sf ) denotes the extended free optimal control problem.

5.2 Perturbation of the time and the endpoints

In this case of nonfixed time and nonfixed endpoint optimal control problems, we not only modify
the control as explained in §3.3, but also modify the final time and the endpoint conditions. As
was mentioned in §3.3, the following constructions obtained from perturbing the final time and
the endpoint conditions are also general for any vector field depending on parameters.

5.2.1 Time perturbation vectors and associated cones

We study how to perturb the interval of definition of the control taking advantage of the fact
that the final time is another unknown for the free optimal control problems.

Let X be a vector field on M along the projection π : M × U → M , I ⊂ R be a closed
interval and (γ, u) : I = [a, b] → M × U a curve such that γ is an integral curve of X{u}.

Let π± = {τ, lτ , δτ, uτ}, where τ is a Lebesgue time in (a, b) for X ◦ (γ, u), lτ ∈ R+ ∪ {0},
δτ ∈ R, uτ ∈ U . For every s ∈ R+ small enough such that a < τ − (lτ − δτ)s, consider
u[πs

±] : [a, b + δτs] → U defined by

u[πs
±](t) =


u(t), t ∈ [a, τ − (lτ − δτ)s],
uτ , t ∈ ( τ − (lτ − δτ)s, τ + δτs ] ,
u(t), t ∈ ( τ + δτs, b + δτs ] ,

if δτ < 0, and by

u[πs
±](t) =


u(t), t ∈ [a, τ − (lτ − δτ)s],
uτ , t ∈ ( τ − (lτ − δτ)s, τ + δτs ] ,
u(t− δτs), t ∈ ( τ + δτs, b + δτs ] ,

if δτ ≥ 0.
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Definition 5.3. The function u[πs
±] is called a perturbation of u specified by the data

π± = {τ, lτ , δτ, uτ}.

Associated to u[πs
±] we consider the mapping γ[πs

±] : [a, b+δτs] → M , the generalized integral
curve of X{u[πs

±]} with initial condition (a, γ(a)).

Given ε > 0, define

ϕπ± : [τ, b]× [0, ε] −→ M
(t, s) 7−→ ϕπ±(t, s) = γ[πs

±](t + δτs)

For every t ∈ [τ, b], ϕt
π± : [0, ε] → M is given by ϕt

π±(s) = ϕπ±(t, s).

As explained in §3.3, the control u[πs
±] depends continuously on the parameters s and π± =

{τ, lτ , δτ, uτ}. Hence the curve ϕt
π± depends continuously on s and π± = {τ, lτ , δτ, uτ}, then it

converges uniformly to γ as s tends to 0. See [25, 31] for more details of the differential equations
depending continuously on parameters.

Let us prove that the curve ϕτ
π± has a tangent vector at s = 0; cf. Proposition 3.4.

Proposition 5.4. Let τ be a Lebesgue time. If u[πs
±] is the perturbation of the control u

specified by the data π± = {τ, lτ , δτ, uτ} such that τ + sδτ is a Lebesgue time, then the curve
ϕτ

π± : [0, ε] → M is differentiable at s = 0. Its tangent vector is

X(γ(τ), u(τ)) δτ + [X(γ(τ), uτ )−X(γ(τ), u(τ))] lτ .

Proof. As in the proof of Proposition 3.4, we compute the limit

A = lim
s→0

(xi ◦ ϕτ
π±)(s)− (xi ◦ ϕτ

π±)(0)
s

= lim
s→0

γi[πs
±](τ + δτs)− γi(τ)

s

As γ is an absolutely continuous integral curve of X{u} , γ̇(t) = X(γ(t), u(t)) at every Lebesgue
time. Then by integration

γi(τ)− γi(a) =
∫ τ

a
f i(γ(t), u(t))dt

and similarly for γ[πs
±] and u[πs

±]. Observe that γ[πs
±](t) = γ(t) and u[πs

±](t) = u(t) for t ∈
[a, τ − (lτ − δτ)s].

Here, we should consider three different possibilities

• if 0 ≤ δτ ≤ lτ , then τ − (lτ − δτ)s < τ < τ + δτs;

• if δτ < 0, then τ − (lτ − δτ)s < τ + δτs < τ ;

• if 0 < lτ < δτ , then τ < τ − (lτ − δτ)s < τ + δτs.

We prove the proposition for the first case and the other cases follow analogously.

A = lim
s→0

∫ τ+δτs
a f i(γ[πs

±](t), u[πs
±](t))dt−

∫ τ
a f i(γ(t), u(t))dt

s

= lim
s→0

∫ τ+δτs
τ−(lτ−δτ)s f i(γ[πs

±](t), uτ )dt−
∫ τ
τ−(lτ−δτ)s f i(γ(t), u(t))dt

s
.
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We need τ + δτs to be a Lebesgue time in order to use Equation (A.17).

A = lim
s→0

f i(γ[πs
±](τ + δτs), uτ )lτs− f i(γ(τ), u(τ))(lτ − δτ)s + o(s)

s

= lim
s→0

f i(γ[πs
±](τ + δτs), uτ )lτ − f i(γ(τ), u(τ))(lτ − δτ).

As f i is continuous on M , we have

A = [f i(γ(τ), uτ )− f i(γ(τ), u(τ))] lτ + f i(γ(τ), u(τ)) δτ

= L([X(γ(τ), u(τ)) δτ + (X(γ(τ), uτ )−X(γ(τ), u(τ))) lτ ])(xi).

Definition 5.5. The tangent vector

v[π±] = X(γ(τ), u(τ)) δτ + [X(γ(τ), uτ )−X(γ(τ), u(τ))] lτ

is the perturbation vector associated to the perturbation data π± = {τ, lτ , δτ, uτ}.

If we disturb the control r times at r different Lebesgue times as in §3.3.1 and also the domain
of the curve (γ, u) as just described, that is, π = {π1, . . . , πr, π±}, with a < t1 ≤ . . . ≤ tr ≤ τ < b,
then γ[πs] is the generalized integral curve of X{u[πs]} with initial condition (a, γ(a)). Consider
the curve ϕt

π : [0, ε] → M for t ∈ [τ, b] given by ϕt
π(s) = γ[πs](t + δτs).

Corollary 5.6. The vector tangent to the curve ϕt
π± : [0, ε] → M at s = 0 is X(γ(t), u(t)) δτ +

V [π1](t) + . . . + V [πn](t), where V [πi] : [ti, b] → TM is the generalized integral curve of
(
XT
){u}

with initial condition (ti, (γ(ti), v[πi])).

This corollary may be proved taking into account Propositions 3.6 and 5.4, Corollary 3.9
and Appendix B.

Now, at a Lebesgue time t ∈ (a, b), we construct a new cone that contains the perturbation
vectors in Definition 3.11 and ±X(γ(t), u(t)).

Definition 5.7. The time perturbation cone K±
t at every Lebesgue time t is the smallest

closed cone in the tangent space at γ(t) containing Kt and ±X(γ(t), u(t)),

K±
t = conv

{±αX(γ(t), u(t)) |α ∈ R}
⋃ ⋃

a<τ≤t
τ is a Lebesgue time

(
ΦX{u}

(t,τ)

)
∗
Vτ


,

where Vτ denotes the set of elementary perturbation vectors at τ , see Definition 3.11.

Enlarging the cone Kτ to K±
τ allows us to introduce time variations.

Proposition 5.8. If t2 is a Lebesgue time greater than t1, then(
ΦX{u}

(t2,t1)

)
∗
K±

t1
⊂ K±

t2
.

Proof. We have

K±
t1

= conv

{±αX(γ(t1), u(t1)) |α ∈ R}
⋃ ⋃

a<τ≤t1
τ is a Lebesgue time

(
ΦX{u}

(t1,τ)

)
∗
Vτ


.
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Just for simplicity we use C±t1 to denote

conv

{±αX(γ(t1), u(t1)) |α ∈ R}
⋃ ⋃

a<τ≤t1
τ is a Lebesgue time

(
ΦX{u}

(t1,τ)

)
∗
Vτ


 .

1. The set C±t1 being convex, if v is interior to K±
t1

, then v is interior to C±t1 by Proposition
D.5, item (d). Hence, by Proposition D.4

v = δt1X(γ(t1), u(t1)) +
r∑

i=1

liV [πi](t1),

where every V [πi](t1) is the transported perturbation vector v[πi] of class I from ti to t1

by the flow of X{u}. By definition of the cone and the linearity of the flow,
(
ΦX{u}

(t2,t1)

)
∗
v

is in K±
t2

, since
(
ΦX{u}

(t2,t1)

)
∗
(X(γ(t1), u(t1))) = X(γ(t2), u(t2)), because both sides of the

equality are the unique solutions of the variational equation along γ associated with X{u}

with initial condition (t1, X(γ(t1), u(t1)). See Appendix B.2 for more details.

2. If v is in the boundary of K±
t1

, then there exists a sequence of vectors (vj)j∈N in the interior
of K±

t1
such that

lim
j→∞

vj = v.

Due to the continuity of the flow

lim
j→∞

(
ΦX{u}

(t2,t1)

)
∗
vj =

(
ΦX{u}

(t2,t1)

)
∗
v.

All the elements of the convergent sequence are in the closed cone K±
t2

, hence the limit(
ΦX{u}

(t2,t1)

)
∗
v is also in K±

t2
.

If the interior of K±
t1

is empty, we consider the relative topology and the reasoning follows
as before. See Appendix D for details.

For the time perturbation cone K±
τ and the corresponding perturbation vectors, it can be

proved properties analogous to the ones stated in Propositions 3.4, 3.6, 3.7 and 3.8.

Proposition 5.9. Let t ∈ (a, b) be a Lebesgue time. If v is a nonzero vector interior to K±
t ,

then there exists ε > 0 such that for every s ∈ (0, ε) there are s′ > 0 and a perturbation of the
control u[πs

±] such that γ[πs
±](t + sδt) = γ(t) + s′v.

Proof. The proof follows the same line as the proof of Proposition 3.12, but now the tangent
space to M at γ(t + sδt) is also identified with Rm through the local chart of M at γ(t).

We use the same functions as in the proof of Proposition 3.12, but keeping in mind that
Γ(s, r) = γ[πs

w0
](t) is replaced by Γ(s, r) = γ[πs

w0
](t + sδt).
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5.2.2 Perturbing the endpoint conditions

Now we consider that the endpoint conditions for the integral curves of X{u} varies on submani-
folds of M . Let Sa be a submanifold of M and γ(a) in Sa; consider the integral curve γ : I → M
of X{u} with initial condition (a, γ(a)).

We consider the curve γ[πs
±] obtained from a time perturbation of the control u associated

with a vector in the time perturbation cone. The initial condition is disturbed along a curve
δ : [0, ε] → Sa with initial tangent vector va in Tγ(a)Sa and δ(0) = γ(a). Taking into account
Appendix B.2.1, §3.3.1 and considering that Tγ(a)Sa and an open set at δ(a) are identified with
Rm, the integral curve γδ(s)[πs

±] : I → M of X{u[πs
±]} with initial condition (a, δ(s)) can be

written as
γδ(s)[π

s
±](t) = γ(t) + s

(
ΦX{u}

(t,a)

)
∗
va + sv[π±](t) + o(s).

We define a cone that includes the time perturbation vectors, the elementary perturbation
vectors and the vectors coming from changing the initial condition on Sa along different curves
δ : [0, ε] → Sa through γ(a) and contained in Sa.

Definition 5.10. Let t be a Lebesgue time. The cone Kt is the smallest closed and convex cone
containing the time perturbation cone at time t and the transported of the tangent space to Sa

from a to t through the flow of X{u}.

Kt = conv(K±
t

⋃
(ΦX{u}

(t,a) )∗(Tγ(a)Sa))

Proposition 5.11. Let t be a Lebesgue time in (a, b) and S ⊂ M be a submanifold with boundary.
Suppose that γ(t) is on the boundary of S. Let T be the half–plane tangent to S at γ(t). If Kt

and T are not separated, then there exists a perturbation of the control u[πs
±] and xa ∈ Sa such

that the integral curve γxa [πs
±] of X{u[πs

±]} with initial condition (a, xa) meets S at a point in the
relative interior of S.

Proof. As Kt and T are not separated, by Proposition D.15 there no exists any hyperplane
containing both and there is a vector v in the relative interior of both Kt and T . By Corollary
D.16, if Kt and T are not separated,

Tγ(t)M = Kt − T.

See Appendix D for the notation and properties. If V is an open set of a local chart at γ(t),
we identify V with Rm and also the tangent space at γ(t), Tγ(t)M , in the same sense defined
for Equation (3.4). Let us consider an orthonormal basis in Tγ(t)M , {e1, . . . , em}. If we take
e0 = −(e1+. . .+em), the vector 0 ∈ Tγ(t)M is expressed as an affine combination of e0, e1, . . . , em:

0 =
1

m + 1
e0 + . . . +

1
m + 1

em.

Each w in Tγ(t)M is written uniquely as

w = a1e1 + . . . + amem

and as an affine combination of e0, e1, . . . , em:

w =
m∑

i=0

bi(w)ei = re0 +
m∑

i=0

(r + ai)ei with r =
1−

∑m
i=1 ai

m + 1
.

Hence, we define the continuous mapping

G : Tγ(t)M −→ Rm+1

w 7−→ (b0(w), b1(w), . . . , bm(w)).
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As bi(0) > 0 for every i = 0, . . . ,m, there exists an open ball B(0, r) centered at 0 with radius
r such that for every w ∈ B(0, r), bi(w) > 0 for i = 0, . . . ,m. Now we consider the restriction
of G to the closed ball B(0, r), G

B(0,r)
: B(0, r) → [0, 1]m+1. Choose vectors eKi ∈ Kt and eT

i ∈ T

such that
ei = eKi − eT

i .

As v lies in the relative interior of both convex sets, ei = (eKi + v)− (eT
i + v) = eKi − eT

i . Then
eKi and eT

i can be chosen in the relative interior of K and T , respectively, because v is in the
relative interior of both. For any w ∈ B(0, r),

w =
m∑

i=0

bi(w)ei =
m∑

i=0

bi(w)
(
eKi − eT

i

)
.

Then we can define
F1 : B(0, r) −→ Kt

w 7−→ F1(w) =
∑m

i=0 bi(w)eKi ,

F2 : B(0, r) −→ T
w 7−→ F2(w) =

∑m
i=0 bi(w)eT

i ,

and let us consider the mapping

G : R×B(0, r) −→ Rm

(s, w) 7−→ (γ[πs
F1(w)](t)− γ[πs

F2(w)](t))/s,

where γ[πs
F1(w)] is the perturbation curve associated to πs

F1(w) and γ[πs
F2(w)](t) = γ(t) + sF2(w)

is the straight line through γ(t) with tangent vector F2(w). As the perturbation vectors are in
the relative interior of the convex cones, we use the linear approximation in (3.4) in such a way
that G(s, w) = F1(w)− F2(w) + o(1). Hence

lim
s→0

G(s, w) = F1(w)− F2(w) = w,

Hence, for any positive number ε, there exists s0 > 0 such that if s < s0 then ‖G(s, w)−w‖ < ε.
Take ε < r, then

‖G(s, w)− w‖ < ε < r = ‖w‖

for every w in the boundary of B(0, r). Thus the map Gs : B(0, r) → Rm, Gs(w) = G(s, w),
satisfies the hypotheses of Corollary E.2 for the point 0 in B(0, r). Hence, the point 0 is in the
image of B(0, r) through Gs and there exists w such that Gs(w) = 0; that is,

γ[πs
F1(w)](t) = γ[πs

F2(w)](t).

Therefore, there exists a perturbation of the control such that the associated trajectory meets
S in an interior point since F2(w) lies in the relative interior of T .

5.3 Pontryagin’s Maximum Principle with time and endpoints nonfixed

Bearing in mind the symplectic formalism introduced in §3.4, we define the corresponding Hamil-
tonian Problem when the time and the endpoints are nonfixed.

Statement 5.12. (Free Hamiltonian Problem, FHP) Given the FOCP , (Q,U,X, F, Sa, Sf ),
and the equivalent F̂OCP , (Q̂, U, X̂, Sa, Sf ), consider the following problem.

Find b ∈ R and (σ̂, u) : [a, b] → T ∗Q̂× U , with γ̂ = π bQ ◦ σ̂ and γ = π2 ◦ γ̂, such that
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(1) γ̂(a) ∈ {0} × Sa, γ(b) ∈ Sf , and

(2) ˙̂σ = (X̂T ∗
){u} ◦ (σ̂, id).

The tuple (T ∗Q̂, U, X̂T ∗
, Sa, Sf ) denotes the free Hamiltonian problem.

Comments:

1. The minimum of the interval of definition of the curves is a, but the maximum is not fixed.

2. The curves γ, γ̂ and σ̂ are assumed to be absolutely continuous. So they are generalized
integral curves of X{u}, X̂{u} and (X̂T ∗

){u}, respectively, in the sense defined in §2.

Now, we are ready to state the Free Pontryagin’s Maximum Principle that provides the
necessary conditions, but in general not sufficient, for finding solutions of the free optimal
control problem.

Theorem 5.13. (Free Pontryagin’s Maximum Principle, FPMP)
If (γ̂∗, u∗) : [a, b] → Q̂× U is a solution of the extended free optimal control problem, Statement
5.2, then there exists (σ̂∗, u∗) : [a, b] → T ∗Q̂× U such that:

1. it is a solution of the associated free Hamiltonian problem;

2. γ̂∗ = π bQ ◦ σ̂∗;

3. (a) H(σ̂∗(t), u∗(t)) = supu∈U H(σ̂∗(t), u) almost everywhere;

(b) supu∈U H(σ̂∗(t), u) = 0 everywhere;

(c) σ̂∗(t) 6= 0 ∈ T ∗bγ∗(t)Q̂ for each t ∈ [a, b];

(d) σ∗0(t) is constant, σ∗0(t) ≤ 0;

(e) transversality conditions:σ∗(a) ∈ annTγ∗(a)Sa and σ∗(b) ∈ annTγ∗(b)Sf .

Observe that once we have the optimal solution of the F̂OCP , the final time and the endpoint
conditions are known and fixed. We would like to apply just Theorem 3.14 in order to prove
Theorem 5.13. However, this is not possible because the freedom to chose the final time and
the endpoint conditions, only restricted to submanifolds, in Statement 5.2 is used in the proof
to consider variations of the optimal curve that are slightly different from the variations used in
the case of fixed time, see §3.3 and §5.2 to compare them.

Apart from the transversality conditions, the main difference between FPMP and PMP is the
fact that the domain of the curves in the optimal control problems is unknown. That introduces
a new necessary condition: the supremum of the Hamiltonian must be zero, not just constant.
Then, from (3a) and (3b) it may be concluded that the Hamiltonian is zero almost everywhere.
For instance, in the time optimal problems the Hamiltonian along extremals must be zero.

There are different statements of Pontryagin’s Maximum Principle. In §3.4 we have con-
sidered the statement of PMP for a fixed–time problem without transversality conditions to
simplify the proof, although it may be stated the PMP for the fixed–time problem with variable
endpoints where the transversality conditions appear. There also exists the PMP for the free
time problem with the degenerate case that the submanifolds are only a point, then the Theorem
is the following one.

Theorem 5.14. (Free Pontryagin’s Maximum Principle without variable endpoints)
If (γ̂∗, u∗) : [a, b] → Q̂× U is a solution of the extended free optimal control problem, Statement
5.2 with Sa = {xa} and Sf = {xf}, then there exists (σ̂∗, u∗) : [a, b] → T ∗Q̂× U such that:
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1. it is a solution of the associated free Hamiltonian problem;

2. γ̂∗ = π bQ ◦ σ̂∗;

3. (a) H (σ̂∗(t), u∗(t)) = supu∈U H (σ̂∗(t), u) almost everywhere;

(b) supu∈U H (σ̂∗(t), u) = 0 everywhere;

(c) σ̂∗(t) 6= 0 ∈ T ∗bγ∗(t)Q̂ for each t ∈ [a, b];

(d) σ∗0(t) is constant, σ∗0(t) ≤ 0;

The only difference with Theorem 5.13 is that the transversality conditions do not appear.

6 Proof of Pontryagin’s Maximum Principle for nonfixed time
and nonfixed endpoints

In the proof of Theorem 5.13 we use notions about perturbations of the trajectories of a system
introduced in §5.2, but they are slightly different from the perturbations in §3.3 used to prove
Theorem 3.14.

Proof. (Theorem 5.13: Free Pontryagin’s Maximum Principle, FPMP)

Given a solution of the F̂OCP , we only need an appropriate initial condition in the fibers of
π bQ : T ∗Q̂ → Q̂ to find a solution of the FHP , because this initial condition is not given in the
hypotheses of the Free Pontryagin’s Maximum Principle. It is not possible to use Theorem 3.14
directly because the perturbation cones are not the same. Indeed, we need to consider changes in
the interval of definition of the curves. These changes imply the inclusion of ±X̂(γ̂∗(t1), u∗(t1))
in the perturbation cone at time t1. All the times considered in this proof are Lebesgue times
for the vector field giving the optimal curve.

By Proposition 5.8, for t2 > t1, (
Φ bX{u∗}

(t2,t1)

)
∗
K̂±

t1
⊂ K̂±

t2
.

Let us consider the limit cone as follows

K̂±
b =

⋃
a<τ≤b

τ is a Lebesgue time

(
Φ bX{u}

(b,τ)

)
∗
K̂±

τ .

Observe that it is a closed cone and it is convex because it is the union of an increasing family
of convex cones. Let us show that (−1,0)bγ∗(b) is not interior to K̂±

b . Indeed, suppose that
(−1,0)bγ∗(b) is interior to the limit cone, then it will be interior to⋃

a<τ<b
τ is a Lebesgue time

(Φ bX{u}

(b,τ) )∗K̂±
τ

by Proposition D.5, item (d). As we have an increasing family of cones, there exists a time τ

such that (−1,0)bγ∗(b) is interior to (Φ bX{u}

(b,τ) )∗K̂±
τ . Let us see that this is not possible.

If (−1,0)bγ∗(b) is interior to (Φ bX{u}

(b,τ) )∗K̂±
τ , then, by Proposition 5.9, there exists ε > 0 such

that, for every s ∈ (0, ε), there exist s′ > 0 and a perturbation of the control u[πs
w0

] such that

γ̂[πs
w0

](b + sδτ) = γ̂∗(b) + s′(−1,0).
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Hence
γ0[πs

w0
](b + sδτ) < γ∗

0
(b) and γ[πs

w0
](b + sδτ) = γ∗(b).

That is, the trajectory γ[πs
w0

] arrives at the same endpoint as γ∗ but with less cost. Then γ̂∗

cannot be optimal as assumed. Thus (−1,0)bγ∗(b) is not interior to K̂±
b .

As (−1,0)bγ∗(b) is not in the interior of K̂±
b , by Proposition D.15 there exists a covector

σ̂b ∈ T ∗bγ∗(b)Q̂ such that

〈σ̂b, (−1,0)〉 ≥ 0,

〈σ̂b, v̂b〉 ≤ 0 ∀ v̂b ∈ K̂±
b .

The initial condition for the covector must not only satisfy the previous inequalities, but also
the transversality conditions. In order to prove this, it is necessary to have the separability of
two new cones.

(3e) Hence, the initial condition in the fibers of T ∗Q̂ may be chosen satisfying the transver-
sality conditions. We consider the manifold with boundary given by

Mf = {(x0, x) | x ∈ Sf , x0 ≤ γ∗
0
(b)}.

The set of tangent vectors to Mf at γ̂∗(b) is the convex set whose generators are (−1,0)bγ∗(b)
and Tf = {0} × Tγ∗(b)Sf .

Given τ ∈ [a, b], consider the following closed convex sets

Kτ = conv(K̂±
τ
⋃

(Φ bX{u∗}
(τ,a) )∗(Ta)), where Ta = {0} × Tγ∗(a)Sa,

Jτ = conv((−1,0)bγ∗(τ)

⋃
(Φ bX{u∗}

(b,τ) )−1
∗ (Tf )), where Tf = {0} × Tγ∗(b)Sf ,

and the manifold Mτ obtained transporting Mf from b to τ using the flow of X̂{u∗}. Observe
that Jτ is the closure of the set of tangent vectors to Mτ at the point γ̂∗(τ). We are going to
show that the cones Kb and Jb are separated, using Proposition 5.11.

Observe that Jb is a half–plane tangent to Mf and γ̂∗(b) is on the boundary of Mf by
construction. Hence, if Kb and Jb were not separated, by Proposition 5.11 there would exist a
perturbation of the control u[πs

w0
] and xa ∈ Sa such that the integral curve γxa [πs

w0
] with initial

condition (a, xa) meets Mf at a point in the relative interior of Mf . Hence we have found a
trajectory with less cost than the optimal one because of the definition of Mf and this is not
possible because of the optimality of γ̂∗. Thus Kb and Jb are separated. So, by Proposition
D.15, there exists a covector σ̂b ∈ T ∗bγ∗(b)Q̂ such that

〈σ̂b, v̂b〉 ≤ 0 ∀ v̂b ∈ Kb, (6.14)
〈σ̂b, ŵb〉 ≥ 0 ∀ ŵb ∈ Jb. (6.15)

This covector separates the vector (−1,0)bγ∗(b) ∈ Jb and the cone K̂±
b ⊂ K±b . Let σ̂∗ be the

integral curve of (X̂T ∗
){u

∗} with initial condition σ̂b ∈ Tbγ∗(b)Q̂ at b.

As Tf is contained in Jb, we have 〈σ̂b, v̂〉 ≥ 0 for every v̂ ∈ Tf . As Tf is a vector space, if
v̂ ∈ Tf , then −v̂ ∈ Tf . Hence, we have

〈σ̂b, v̂〉 = 0 for every v̂ ∈ Tf .

That is,
〈σ̂b, (0, v)〉 = 0 for every v ∈ Tγ∗(b)Sf .
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This is equivalent to 〈σb, v〉 = 0 for every v ∈ Tγ∗(b)Sf ; that is, σb = σ∗(b) is in the annihilator
of Tγ∗(b)Sf as wanted.

For every ŵb ∈ Jb, if Ŵ : I → TQ̂ is the integral curve of (X̂T ){u
∗} with initial condition ŵb

at time b, then by Proposition B.5 the pairing continuous natural function 〈σ̂∗, Ŵ 〉 : I → R is
constant everywhere and 〈σ̂∗(a), Ŵ (a)〉 ≥ 0 by Equation (6.15). As (Φ bX{u∗}

(b,a) )−1
∗ (Jb) = Ja by the

continuity and the linearity of the flow, the transversality condition at a is proved analogously
as the transversality condition at b proved above.

Since (γ̂∗, u∗) is a solution of the F̂OCP , it is also a solution of ÔCP with time and endpoints
fixed and given by the curve. Hence, we can apply Pontryagin’s Maximum Principle for time
and endpoints fixed, Theorem 3.14. If the curve (γ̂∗, u∗) is a solution of ÔCP with I = [a, b]
and endpoints γ̂∗(a) and γ̂∗(b), (σ̂∗, u∗) : [a, b] → T ∗Q̂ × U is a solution of the HP , such that
γ̂∗ = π bQ ◦ σ̂∗, and moreover σ̂∗ satisfies that

(3a) H(σ̂∗(t), u∗(t)) = supu∈U H(σ̂∗(t), u) almost everywhere.

(3b) supu∈U H(σ̂∗(t), u) is constant everywhere.

(3c) σ̂∗(t) 6= 0 ∈ T ∗bγ∗(t)Q̂ for every t ∈ [a, b].

(3d) σ∗0(t) is constant, σ∗0(t) ≤ 0.

Observe that it only remains to prove (3b) of the Free Pontryagin’s Maximum Principle,
since (3a), (3c) and (3d) are the same in both Theorems 3.14, 5.13.

(3b) Due to (3a) we already know that the supremum of the Hamiltonian is constant every-
where along (σ̂∗, u∗). Now, let us prove that the supremum can be taken to be zero everywhere.

Take v̂b = ±X̂(γ̂∗(b), u∗(b)) ∈ K̂±
b , let V̂ : I → TQ̂ be the integral curve of (X̂T ){u

∗} with
initial condition (b, γ̂(b), v̂b), then the continuous function 〈σ̂∗, V̂ 〉 : I → R is constant everywhere
by Proposition B.5. Thus,

〈σ̂∗(t), V̂ (t)〉 = 〈σ̂∗(t),±X̂(γ̂∗(t), u∗(t))〉 ≤ 0 for every t ∈ I

by Equation (6.14), and this implies that

〈σ̂∗(t), X̂(γ̂∗(t), u∗(t))〉 = 0.

As 〈σ̂∗(t), X̂(γ̂∗(t), u∗(t))〉 = H(σ̂∗(t), u∗(t)), the Hamiltonian function is zero everywhere and
the supremum of the Hamiltonian function is zero everywhere by Theorem 3.14.

Observe that the initial condition for the covector in this proof has been chosen such that the
tangent spaces to the initial and final submanifolds are contained in the separating hyperplane
defined by the covector. In this statement of the Maximum Principle the initial condition for
the covector must satisfy more conditions than in Theorem 3.14 (namely the transversality
conditions).

Appendices

This last part of the report is mainly devoted to state and prove some of the results used in the
proof of the Maximum Principle and to give more understanding to some key points.
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A Results on real functions

In this Appendix we focus on some necessary technicalities for the proof of Pontryagin’s Maxi-
mum Principle. These are related with results from analysis and the notion of a Lebesgue point
for a real function. In this paper the notion of a Lebesgue point is applied to vector fields. For
more details about all this, see [66, 74, 75].

Definition A.1. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is Lipschitz
if there exists K ∈ R such that dY (f(x1), f(x2)) ≤ K dX(x1, x2) for all x1, x2 ∈ X.

A function f : X → Y is locally Lipschitz if, for every x ∈ X there exists an open neigh-
bourhood V of x and K ∈ R+ such that dY (f(x1), f(x2)) ≤ K dX(x1, x2) for all x1 and x2 in
V .

If M is a differentiable manifold, g is a Riemannian metric on M and dg : M ×M → R is
the induced distance; then (M,dg) is a metric space where the notion of Lipschitz on M can be
defined. A real–valued function F : M → R is locally Lipschitz if, for every p ∈ M we take the
local chart (V, φ) such that φ(p) = 0, φ(V ) = B(0, r) is the open ball centered at the origin with
radius r > 0 in the standard Euclidean space, and F ◦ φ−1 : B(0, r) → R is Lipschitz. That is,
there exists K ∈ R+ with

|F (p1)− F (p2)| = |(F ◦ φ−1)(φ(p1))− (F ◦ φ−1)(φ(p2))| ≤ Kd(φ(p1), φ(p2)), ∀p1, p2 ∈ V.

Hence, given the local chart (V, φ), we define a distance dφ : V × V → R on V , dφ(p1, p2) =
d(φ(p1), φ(p2)). Consequently, (V, φ) is a metric space with the topology induced by the open
set V in M . This distance is equivalent to the distance induced by the Riemannian metric on
V .Observe that the notion of locally Lipschitz for functions on manifolds depends on the local
chart, but C1 functions are always locally Lipschitz.

Definition A.2. A function f : [a, b] → R is uniformly continuous on [a, b] if, for every
ε > 0, there exists δ > 0 such that for any t, s ∈ [a, b] with |t− s| < δ, we have |f(t)− f(s)| < ε.

Definition A.3. A function f : [a, b] → R is absolutely continuous on [a, b] if, for every
ε > 0, there exists δ > 0 such that for every finite number of nonoverlapping subintervals (ai, bi)
of [a, b] with

∑n
i=1 |bi − ai| < δ, we have

∑n
i=1 |f(bi)− f(ai)| < ε.

We consider an interval I = [a, b] in R with the usual Lebesgue measure. A statement is said
to be satisfied almost everywhere if it is fulfilled in I except on a zero measure set. A measurable
subset A ⊂ I is said of full measure if I − A has measure zero. Recall that if A,B ⊂ I and
I −A, I −B have measure zero, then A ∩B is not empty.

Results in [66], pp. 96, 100, 105 allow one to prove the following result.

Proposition A.4. If f is absolutely continuous, then f has a derivative almost everywhere.

Theorem A.5. [[66], pp.105 and [74], pp.836] If f is absolutely continuous and f ′(t) = 0 almost
everywhere on [a, b], then f is a constant function.

Definition A.6. A real–valued function f on a metric space (X, d) is called lower semicon-
tinuous at x0 ∈ X if, for every ε > 0, there exists δ(ε, x0) > 0 such that f(x) ≥ f(x0) − ε
whenever d(x, x0) ≤ δ(ε, t0).

If f is lower semicontinuous at every point of (X, d), it is said to be lower semicontinuous
on (X, d).

The following result is stated by Pontryagin et al. in [64], page 102, but it is neither proved
nor stated as a proposition. We believe it is appropriate to write it with more detail because it
is used in §4.
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Proposition A.7. Let f and g be real functions, f, g : [a, b] → R. If f is continuous, g is lower
semicontinuous, f ≤ g and f = g almost everywhere then f = g everywhere.

Proof. Let t0 ∈ [a, b]. As g is lower semicontinuous on [a, b], for every ε > 0 there exists
δ(ε, t0) = δ > 0 such that

g(t) ≥ g(t0)− ε

whenever |t− t0| < δ(ε, t0).

Since f and g coincide almost everywhere on [a, b], there exists t1 ∈ (t0− δ, t0 + δ) such that
f(t1) = g(t1). Moreover, f ≤ g, so

f(t0) ≤ g(t0) ≤ g(t1) + ε = f(t1) + ε. (A.16)

The continuity of f guarantees that for every ε′ > 0, there exists δ′ > 0 such that if |t1− t0| < δ′,
then f(t1)− ε′ < f(t0) < f(t1) + ε′. Hence Equation (A.16) is rewritten as follows:

f(t0) ≤ g(t0) ≤ f(t0) + ε′ + ε.

As this inequality is valid for every ε, ε′ > 0, g(t0) = f(t0) for every t0 ∈ [a, b]. Thus f = g
everywhere.

A.1 Lebesgue points for a real function

After introducing the concept of measurable function and some properties of such functions,
we state Lebesgue’s differentiation theorem, which enables us to distinguish certain points for a
measurable function. In the entire paper we consider the Lebesgue measure in R. See the book
by Zaanen [75] for more details.

Definition A.8. A function f : [a, b] ⊂ R → R is measurable if the set {t ∈ [a, b] : f(t) > α}
is measurable for every α ∈ R.

Definition A.9. A function f : [a, b] → R is Lebesgue integrable over each Lebesgue measur-
able set of finite measure if ν(x) =

∫ x
a fdµ is well defined for every x ∈ [a, b].

Theorem A.10. (Lebesgue’s Differentiation Theorem [75]) Let µ be the Lebesgue mea-
sure. If f : [a, b] → R is a Lebesgue integrable function over every Lebesgue measurable set of
finite measure, then for ν(x) =

∫ x
a fdµ,

Dν(x+) = Dν(x−) = f(x)

holds for µ–almost every x ∈ [a, b], where Dν(x+), Dν(x−) are the right and left derivatives of
ν respectively.

The equality Dν(x−) = f(x) almost everywhere may be rewritten as follows for h > 0

lim
h→0

ν(x− h)− ν(x)
−h

= f(x) a.e. ⇔ lim
h→0

∫ x−h
a f(t)dt−

∫ x
a f(t)dt

−h
= f(x) a.e. ⇔

⇔ lim
h→0

∫ x
x−h f(t)dt

h
= f(x) a.e. ⇔

∫ x

x−h
f(t)dt = hf(x) + o(h) a.e.

Definition A.11. If f : [a, b] → R is a measurable function, x ∈ (a, b) is a Lebesgue point
for f if,

lim
h→0

∫ x

x−h

f(t)− f(x)
h

dt = 0.
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Remark A.12. As Theorem A.10 is true almost everywhere, the set of Lebesgue points for a
measurable function has full measure.
Remark A.13. Observe that if u : I → U is measurable and bounded, then it is integrable and
the set of Lebesgue points for u has full measure. If f : U → R is continuous, then f ◦ u : I → R
is integrable, and the intersection of Lebesgue points for u and f ◦ u has full measure.

Note: Assume we have a manifold Q, an open set U ⊂ Rk and a continuous vector field X along
the projection π : Q × U → Q. If (γ, u) : I = [a, b] → Q × U , where γ is absolutely continuous
and u is measurable and bounded, then X ◦ (γ, u) : I → TQ is a measurable vector field along
(γ, u), in the sense that in any coordinate system its coordinate functions are measurable. A
point t ∈ (a, b) is a Lebesgue point for u if∫ t

t−h
X(γ(s), u(s))ds = hX(γ(t), u(t)) + o(h). (A.17)

The Lebesgue points for a vector field are useful in §3.3, §5.2 and in the following appendix to
guarantee the differentiability of some curves, that is, the existence of its tangent vector. See
[25, 31] for more details about differential equations and measurability.

B Time–dependent variational equations

The variational equations give us an approach to how the integral curves of vector fields vary
when the initial condition varies along a curve. These equations have a formulation on the
tangent and the cotangent bundle. Here we are interested in studying the variational equations
associated to time–dependent vector fields, and in proving some relationship between the solu-
tions of variational equations on the tangent bundle and the ones on the cotangent bundle. See
[50] for more details about these concepts.

B.1 Time–dependent vector fields

As seen in §2, control systems are associated to a time–dependent vector field through a vector
field along a projection. For I ⊂ R, a differentiable time–dependent vector field X is a mapping
X : I ×M → TM such that each (t, x) ∈ I ×M is assigned to a tangent vector X(t, x) in TxM .
For every (s, x) ∈ I × M , the integral curve of X with initial condition (s, x) is denoted by
ΦX

(s,x) : J(s,x) ⊂ I → M and satisfies

1. ΦX
(s,x)(s) = x.

2.
d

dt

∣∣∣∣
t

ΦX
(s,x) = X(t, ΦX

(s,x)(t)), t ∈ J .

The domain of ΦX
(s,x) is denoted by J(s,x) ⊂ I because it depends on the initial condition for the

integral curves.

The time dependent flow or evolution operator of X is the mapping

ΦX : I × I ×M −→ M
(t, s, x) 7−→ ΦX(t, s, x) = ΦX

(s,x)(t)
(B.18)

defined in a maximal open neighborhood V ×M of ∆I ×M , where ∆I is the diagonal of I × I,
and ΦX satisfies
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1. ΦX(s, s, x) = x.

2.
d

dt

∣∣∣∣
t

(
ΦX(t, s, x)

)
= X(t, ΦX(t, s, x)).

To obtain the original vector field through the evolution operator, the expression in the second
assertion must be evaluated at s = t,[

d

dt

∣∣∣∣
t

(
ΦX(t, s, x)

)]∣∣∣∣
s=t

= X(t, x).

There is a time–independent vector field on the manifold I × M associated to X and given
by X̃(t, x) = ∂/∂t|(t,x) + X(t, x). For (t, s, x) ∈ V × M , the flow of X̃ is Φ eX : I × I × M →
I × M such that Φ eX

(s,x) is the integral curve of X̃ with initial condition (s, x) at time 0 and

Φ eX(t, (s, x)) = (s+t, ΦX(s+t, (s, x))). The theorems in differential equations about the existence
and uniqueness of solutions guarantee the existence and uniqueness of the evolution operator
ΦX defined maximally.

For (t, s) ∈ V ⊂ I × I,

ΦX
(t,s) : M −→ M

x 7−→ ΦX
(t,s)(x) = ΦX

(s,x)(t)

is a diffeomorphism on M satisfying ΦX
(t,s) = ΦX

(t,r) ◦ ΦX
(r,s) for r ∈ I, such that (r, s), (t, r) ∈ V .

B.2 Complete lift

Fromt the evolution operator of time–dependent vector fields in Equation (B.18), it is determined
the evolution operator of a particular vector field on TM .

Let Xt : M → TM be a vector field on M such that Xt(x) = X(t, x) for every t ∈ I. The
complete or tangent lift of Xt to TM is the time–dependent vector field XT

t on TM satisfying

XT
t = κM ◦ TXt,

where κM is the canonical involution of TTM ; that is, a mapping κM : TTM → TTM such that
κ2

M = Id and τTM ◦ κM = TτM . See [50] for more details in the definition. Moreover, observe
that Xt is a vector field that makes the following diagram commutative:

TTM
τTM //

TτM

��

TM

τM

��
TM

TXt

XX

τM // M

Xt

XX

If (x, v) ∈ TM , then TXt(x, v) = (x,Xt(x), TxXt(v)) ∈ T(x,Xt(x))(TM).

Let (W,xi) be a local chart at x in M such that Xt = Xi
t ∂/∂xi where Xi

t(x) = Xi(t, x) and
Xi ∈ C∞(I ×W ). If (xi, vi) are the induced local coordinates in TM , then locally

XT (t, x, v) = Xi(t, x)
∂

∂xi

∣∣∣∣
(x,v)

+
∂X i

∂xj
(t, x) vj ∂

∂vi

∣∣∣∣
(x,v)

.

The equations satisfied by the integral curves of XT are called variational equations.
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Proposition B.1. If X is a time–dependent vector field on M and ΦX is the evolution operator
of X, then the map Ψ: I × I × TM → TM defined by

Ψ(t, s, (x, v)) =
(
ΦX(t, s, x), TxΦX

(t,s)(v)
)

is the evolution operator of XT .

Proof. We have to prove that
Ψ(s, s, (x, v)) = (x, v);

d

dt

∣∣∣∣
t

(Ψ(t, s, (x, v))) = XT (t, Ψ(t, s, (x, v))).

The first item is proved easily,

Ψ(s, s, (x, v)) =
(
ΦX(s, s, x), Tx

(
ΦX

(s,s)

)
(v)
)

= (x, v).

As for the second assertion, we use that ΦX
(t,s) : M → M is a C∞ diffeomorphism satisfying

Tt

(
TxΦX

(t,s)(v)
)

1 =
d

dt

∣∣∣∣
t

(
TxΦX

(t,s)(v)
)

1 =
(

Tx

(
d

dt

∣∣∣∣
t

(
ΦX

(t,s)

)
1
))

(v)

= Tx

(
TtΦX

(s,x)1
)

(v),

and we obtain

d

dt

∣∣∣∣
t

(Ψ(t, s, x, v)) =
(

d

dt

∣∣∣∣
t

(
ΦX(t, s, x)

)
,

d

dt

∣∣∣∣
t

(
TxΦX

(t,s)(v)
))

=
(

X(t, ΦX(t, s, x)),
(

Tx

(
d

dt

∣∣∣∣
t

(
ΦX

(t,s)

)))
(v)
)

=
(
X(t, ΦX(t, s, x)),

(
Tx

(
Xt(ΦX(t, s, x))

))
(v)
)

=
(
X(t, ΦX(t, s, x)),

(
TΦX(t,s,x) (Xt) ◦ Tx(ΦX(t, s, x))

)
(v)
)

=
(
X(t, ΦX(t, s, x)), TΦX(t,s,x) (Xt)

(
Tx(ΦX

(t,s))(v)
))

= XT (t, Ψ(t, s, x, v)).

Hence, the evolution operator of XT is the complete lift of the evolution operator of X. The
integral curves of XT are vector fields along the integral curves of X.

B.2.1 About the geometric meaning of the complete lift

The integral curves of XT must be understood as the linear approximation of the integral curves
of X when the initial condition varies along a curve in M . This idea appears in §3.3 and §4.

Let us explain the next figure. Given an integral curve of X with initial condition (s, x),
we consider a curve σ starting at the point x of the integral curve. Every point of σ can be
considered as the initial condition at time s for an integral curve of X. Thus the flow of X
transports the curve σ at a different curve δt point by point. The resultant curve is related with
the complete lift of X as the following results prove.
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Proposition B.2. Let X : I×M → TM be a time–dependent vector field with evolution operator
ΦX and (s, x) ∈ I ×M . For ε > 0, let σ : (−ε, ε) ⊂ R → M be a C∞ curve such that σ(0) = x ∈
M . For every t ∈ I, we define a curve δt : (−ε, ε) → M such that

1. δt(τ) = ΦX
(s,σ(τ))(t),

2. δs(τ) = σ(τ), and

3. δt(0) = ΦX
(s,x)(t).

Then δ̇t(0) = TxΦX
(t,s)(σ̇(0)).

Proof.

δ̇t(0) = (T0δt(τ))
d

dτ

∣∣∣∣
0

=
(
T0

(
ΦX

(s,σ(τ))(t)
)) d

dτ

∣∣∣∣
0

=
(
T0

(
ΦX

(t,s)(σ(τ))
)) d

dτ

∣∣∣∣
0

= Tσ(0)Φ
X
(t,s)

(
T0(σ(τ))

d

dτ

∣∣∣∣
0

)
= Tσ(0)Φ

X
(t,s) (σ̇(0)) = TxΦX

(t,s) (σ̇(0)) .

Corollary B.3. Let X be a time–dependent vector field on M . For x ∈ M , x ∈ TxM and for
a small enough ε > 0, let σ : (−ε, ε) ⊂ R → M be a C∞ curve such that σ(0) = x ∈ M and
σ̇(0) = v. If δt is the curve defined in Proposition B.2, then δ̇(·)(τ) : I → TM , t 7→ δ̇t(τ) is the
integral curve of XT with initial condition (s, σ̇(τ)).

Proof. The proof just comes from Propositions B.1 and B.2 and the definition of the curve
δt.

B.3 Cotangent lift

Given (t, s) ∈ I × I, the evolution operator ΦXT

(t,s) is a diffeomorphism on TM and a linear
isomorphism on the fibers on TM , so it makes sense to consider its transpose and inverse,
( τΦXT

(t,s))
−1 = Λ(t,s). It is a linear isomorphism on the fibers on T ∗M and satisfies Λ(t,s) = Λ(t,r)◦

Λ(r,s) for r ∈ I. Hence Λ: I × I × T ∗M → T ∗M is the evolution operator of a time–dependent
vector field on T ∗M , called the cotangent lift XT ∗

of X to T ∗M .

Another vector field on T ∗M may be associated to X using the concepts in Hamiltonian
formalism. For every t ∈ I, the Hamiltonian system

(
M,ω, X̂t

)
given by a symplectic manifold
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(M,ω) and the Hamiltonian function X̂t : T ∗M → R, X̂t(px) = iX(t,x)px where px ∈ T ∗
xM ; has

associated a Hamiltonian vector field Zt that satisfies Hamilton’s equations iZtω = dX̂t.

In local coordinates (x, p) for T ∗M , Z : I × T ∗M → TT ∗M is given by

Z(t, x, p) = Xi(t, x)
∂

∂xi

∣∣∣∣
(x,p)

− ∂Xj

∂xi
(t, x) pj

∂

∂pi

∣∣∣∣
(x,p)

.

The equations satisfied by the integral curves of Z in the fibers are the adjoint variational
equations on the cotangent bundle. In the literature, they are sometimes called adjoint equations.

Let us prove that both vector fields Z and XT ∗
associated to X are the same.

Proposition B.4. If X is a time–dependent vector field on M and ΦX is the evolution operator
of X, then Λ: I × I × T ∗M → T ∗M such that

Λ(t, s, (x, p)) = (ΦX(t, s, x),
(

τTxΦX
(t,s)

)−1
(p))

is the evolution operator of Z. Thus Z = XT ∗
.

Proof. We have to prove that
Λ(s, s, (x, p)) = (x, p),

d

dt

∣∣∣∣
t

(Λ(t, s, (x, p))) = Z(t, Λ(t, s, (x, p))).

The first item is proved easily,

Λ(s, s, (x, p)) =
(

ΦX(s, s, x),
(

τTxΦX
(s,s)

)−1
(p)
)

= (x, Id (p)) = (x, p).

As ΦX
s : I ×M → M is C∞, in local coordinates we have

d

dt

∣∣∣∣
t

(
τTxΦX

(t,s)

)
= τTx

(
d

dt

∣∣∣∣
t

ΦX
(t,s)

)
,

where both mappings go from T ∗
xM to T ∗

ΦX(t,(s,x))
M . Now let us prove the second assertion:

d

dt

∣∣∣∣
t

(Λ(t, s, x, p)) =
(

d

dt

∣∣∣∣
t

(
ΦX(t, s, x)

)
,

d

dt

∣∣∣∣
t

((
τTxΦX

(t,s)

)−1
(p)
))

=
(

X(t,ΦX(t, s, x)),
(
−
(

τTxΦX
(t,s)

)−1
◦
(

d
dt

∣∣
t

(
τTxΦX

(t,s)

))
◦
(

τTxΦX
(t,s)

)−1
)

(p)
)

=
(

X(t,ΦX(t, s, x)),
(
−
(

τTxΦX
(t,s)

)−1
◦
(

τTx

(
d
dt

∣∣
t
ΦX

(t,s)

)))((
τTxΦX

(t,s)

)−1
(p)
))

=
(

X(t,ΦX(t, s, x)),−
(

τTΦX
(t,s)

(x)

(
Xt ◦ ΦX

(t,s) ◦
(
ΦX

(t,s)

)−1
))((

τTxΦX
(t,s)

)−1
(p)
))

=
(

X(t,ΦX(t, s, x)),−
(

τTΦX
(t,s)

(x) (Xt)
)((

τTxΦX
(t,s)

)−1
(p)
))

= Z(t, Λ(t, s, x, p)).

Hence, the evolution operator of Z is the cotangent lift of the evolution operator of X. Thus
Z = XT ∗

.
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B.4 A property for the complete and cotangent lift

The previous propositions allow us to determine an invariant function along integral curves of
X.

Proposition B.5. Let X : I×M → TM be a time–dependent vector field and let XT : I×TM →
TTM and XT ∗

: I × T ∗M → TT ∗M be the complete lift and cotangent lift of X, respectively.
If γ : I → M is an integral curve of X with initial condition (s, x), V : I → TM is the integral
curve of XT with initial condition (s, (x, v)) where v ∈ Tγ(s)M , and Λ: I → T ∗M is the integral
curve of XT ∗

with initial condition (s, (x, p)) where p ∈ T ∗
γ(s)M , then

〈Λ, V 〉 : I → R
t 7→ 〈Λ(t), V (t)〉

is constant along γ.

Proof. If ΦX is the evolution operator of X, the evolution operators of XT and XT ∗
are

ΦXT
(t, s, (x, v)) =

(
ΦX(t, s, x), TxΦX

(t,s)(v)
)

,

ΦXT∗
(t, s, (x, p)) =

(
ΦX(t, s, x),

(
τTxΦX

(t,s)

)−1
(p)
)

,

respectively, because of Propositions B.1 and B.4. Hence

〈Λ(t), V (t)〉 =
〈(

τTxΦX
(t,s)

)−1
(p), TxΦX

(t,s)(v)
〉

=
〈

τ

((
TxΦX

(t,s)

)−1
)

(p), TxΦX
(t,s)(v)

〉
=

〈
p,

((
TxΦX

(t,s)

)−1
◦
(
TxΦX

(t,s)

))
(v)
〉

= 〈p, v〉 = constant.

C The tangent perturbation cone as an approximation of the
reachable set

In control systems, the reachable sets are useful to determine the accessibility and the con-
trollability of the systems. In optimal control, the reachable set has a great importance for
distinguishing the abnormal optimal curves from the normal ones [24, 52]. A key point in the
proof of the Maximum Principle depends on the understanding of that linear approximation of
the reachable set in a neighborhood of a point in the optimal curve. This interpretation of the
tangent perturbation cone has been studied in [2], but we will study it in a great and clear detail
in this appendix.

In the sequel, we explain why this interpretation of the tangent perturbation cone is feasible.
Remember from §B.1 that a time–dependent vector field on M has associated the evolution
operator ΦX : I × I ×M → M , (t, s, x) 7→ ΦX(t, s, x) as defined in Equation (B.18).

Proposition C.1. Let X, Y be time–dependent vector fields on M , then there exists a time–dependent
vector field Z such that

ΦX+Y
(t,s) (x) = (ΦX

(t,s) ◦ ΦZ
(t,s))(x)

and Z = (ΦX
(t,s)∗)

−1Y = (ΦX
(t,s))

∗Y .
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Proof. For any initial time s, we define the diffeomorphism Φ̃X
s : I × M → I × M , (t, x) →

(t, ΦX
s (t, x)) such that Φ̃X

s (s, x) = (s, x). We look for a time–dependent vector field Z on M
such that

Φ̃X+Y
s (t, x) = (Φ̃X

s ◦ Φ̃Z
s )(t, x) . (C.19)

This expression has been assumed true in [2, 22] for s = 0, but it has not been carefully proved.
On the left–hand side of Equation (C.19) we have

Φ̃X+Y
s (t, x) = (t, ΦX+Y

s (t, x))

and the right–hand side is

(Φ̃X
s ◦ Φ̃Z

s )(t, x) = Φ̃X
s (t, ΦZ

s (t, x)) = (t, ΦX
s (t, ΦZ

s (t, x))) .

Thus Equation (C.19) is satisfied if and only if

ΦX+Y
s (t, x) = ΦX

s (t, ΦZ
s (t, x)) = (ΦX

s ◦ Φ̃Z
s )(t, x) , (C.20)

or equivalently,

ΦX+Y
(t,s) = ΦX

(t,s) ◦ ΦZ
(t,s) . (C.21)

Let us differentiate with respect to t the left–hand side of Equation (C.20),

d

dt
ΦX+Y

(s,x) (t) = (X + Y )(t, ΦX+Y
(s,x) (t)) = (X + Y )(t,ΦX

s (t, ΦZ
s (t, x))) . (C.22)

The differentiation with respect to time of the right–hand side of Equation (C.20), for f in
C∞(M), is

d

dt
(ΦX

s (t, ΦZ
s (t, x)))f = lim

h→0

f((ΦX
s (t + h, ΦZ

s (t + h, x))))− f((ΦX
s (t, ΦZ

s (t, x))))
h

= lim
h→0

{
(f ◦ ΦX

(t+h,s))(Φ
Z
(t+h,s)(x))− (f ◦ ΦX

(t+h,s))(Φ
Z
(t,s)(x))

h

+
(f ◦ ΦX

s )(t + h, ΦZ
s (t, x))− (f ◦ ΦX

s )(t, ΦZ
s (t, x))

h

}
= Z(t, ΦZ

s (t, x))(f ◦ ΦX
(t,s)) + X(t,ΦX

s (t, ΦZ
s (t, x)))f

= TΦZ
s (t,x)Φ

X
(t,s)Z(t, ΦZ

s (t, x))f + X(t, ΦX
s (t, ΦZ

s (t, x)))f .

Hence
d

dt
(ΦX

s (t, ΦZ
s (t, x))) = TΦZ

s (t,x)Φ
X
(t,s)Z(t, ΦZ

s (t, x)) + X(t,ΦX
s (t, ΦZ

s (t, x))) .

From Equation (C.22) we have

X(t,ΦX
s (t, ΦZ

s (t, x))) + Y (t, ΦX
s (t, ΦZ

s (t, x))) = TΦZ
s (t,x)Φ

X
(t,s)Z(t, ΦZ

s (t, x))

+ X(t, ΦX
s (t, ΦZ

s (t, x))) ,

that is,
Y ((Φ̃X

s ◦ Φ̃Z
s )(t, x)) = TΦZ

s (t,x)Φ
X
(t,s)Z(t, ΦZ

s (t, x)) .
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Remember that the pushforward of a time–dependent vector field Z is another time–dependent
vector field given by

(ΦX
(t,s)∗Z)(t, x) = T(ΦX

(t,s)
)−1(x)Φ

X
(t,s)(Z(t, (ΦX

(t,s))
−1(x))) .

Then
(Y ◦ Φ̃X

s ◦ Φ̃Z
s )(t, x) = (ΦX

(t,s)∗Z)(t, ΦX
(t,s)(Φ

Z
s (t, x)))

= (ΦX
(t,s)∗Z)(Φ̃X

s (t, ΦZ
s (t, x))) = (ΦX

(t,s)∗Z)(Φ̃X
s ◦ Φ̃Z

s )(t, x) ,

or equivalently,
Y ◦ Φ̃X

s ◦ Φ̃Z
s = (ΦX

(t,s)∗Z) ◦ Φ̃X
s ◦ Φ̃Z

s ,

that is, Y = ΦX
(t,s)∗Z.

Hence Z = (ΦX
(t,s)∗)

−1Y = (ΦX
(t,s))

∗Y . Now, going back to Equation (C.21) we have

ΦX+Y
(t,s) (x) = (ΦX

(t,s) ◦ Φ
(ΦX

(t,s)
)∗Y

(t,s) )(x) . (C.23)

Definition C.2. Let M be a manifold, U be a set in Rk and X be a vector field along the
projection π : M × U → M . The reachable set from x0 ∈ M at time T ∈ I is the set of
points described by

R(x0, T ) = {x ∈ M | there exists (γ, u) : [a, b] → M × U such that
γ̇(t) = X(γ(t), u(t)), γ(a) = x0, γ(T ) = x} .

Once we know how to express the flow of a sum of vector fields as a composition of flows
of different vector fields, we are going to show that all the integral curves used to construct the
reachable set in Definition C.2 can be written as composition of flows associated with vector
fields given by vectors in the tangent perturbation cone in Definition 3.11.

Each control system X ∈ X(π) with the projection π : M × U → M is a time–dependent
vector field X{u} when the control is given. Consider the reference trajectory (γ, u) to be an
integral curve of X{u} with initial condition x0 at a. Take γ(t1) to be a reachable point from x0

at time t1. Let us consider another control ũ : I → U and the integral curve of X{ũ} with initial
condition x0 at a denoted by γ̃. Then γ̃(t1) is another reachable point from x0 at time t1.

Let us see how to reach the point γ̃(t1) using Equation (C.23),

γ̃(t1) = ΦX{ũ}

(t1,a)(x0) = Φ
X{u}+(X{ũ}−X{u})
(t1,a) (x0)

=

(
ΦX{u}

(t1,a) ◦ Φ

“
ΦX{u}

(t1,a)

”∗
(X{ũ}−X{u})

(t1,a)

)
(x0)

=

(
ΦX{u}

(t1,a) ◦ Φ

“
ΦX{u}

(t1,a)

”∗
(X{ũ}−X{u})

(t1,a) ◦
(
ΦX{u}

(t1,a)

)−1
◦ ΦX{u}

(t1,a)

)
(x0)

=

(
ΦX{u}

(t1,a) ◦ Φ

“
ΦX{u}

(t1,a)

”∗
(X{ũ}−X{u})

(t1,a) ◦
(
ΦX{u}

(t1,a)

)−1
)

(γ(t1)) .

(C.24)

Hence, from γ(t1) we can get every reachable point from x0 at time t1 through Equation (C.24)
composing integral curves of the vector fields X{u} and (ΦX{u}

(t1,a))
∗(X{ũ} −X{u}) : I ×M → TM ,

this latter with initial condition x0 at a.
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In fact this is true for any time τ in [a, t1], that is,

γ̃(τ) =

(
ΦX{u}

(τ,a) ◦ Φ

“
ΦX{u}

(τ,a)

”∗
(X{ũ}−X{u})

(τ,a) ◦
(
ΦX{u}

(τ,a)

)−1
)

(γ(τ)) .

If we compose with the flow of X{u}, we get a reachable point from x0 at time t1 because it is
a concatenation of integral curves of the dynamical system,

ΦX{u}

(t1,τ)(γ̃(τ)) =

(
ΦX{u}

(t1,τ) ◦ ΦX{u}

(τ,a) ◦ Φ

“
ΦX{u}

(τ,a)

”∗
(X{ũ}−X{u})

(τ,a) ◦
(
ΦX{u}

(τ,a)

)−1
)

(γ(τ))

=

(
ΦX{u}

(t1,a) ◦ Φ

“
ΦX{u}

(τ,a)

”∗
(X{ũ}−X{u})

(τ,a) ◦
(
ΦX{u}

(t1,a)

)−1
)

(γ(t1)) .

(C.25)

Hence, from γ(t1) we can also get reachable points from x0 at time t1 through composition of

integral curves of the vector fields X{u} and
(
ΦX{u}

(τ,a)

)∗ (
X{ũ} −X{u}), the latter with initial

condition γ(a) at time a.

On the other hand, the tangent perturbation cone at γ(t1) is given by the closure of the convex
hull of all the tangent vectors

(
ΦX{u}

(t1,τ)

)
∗

(
X{ũ}(τ, γ(τ))−X{u}(τ, γ(τ))

)
for every Lebesgue time

τ in [a, t1]. These vectors are related with the vector fields X{u} through Equations (C.24) and
(C.25).

In this sense, we say that the tangent perturbation cone at γ(t1) is an approximation of the
reachable set in a neighborhood of γ(t1).

D Convex sets, cones and hyperplanes

We study some properties satisfied by convex sets and cones; see [13, 65] for details. Unless
otherwise stated, we suppose that all the sets are in a n–dimensional vector space E. We need
to define the different kinds of cones and linear combinations used in this report.

Definition D.1. A cone C with vertex at 0 ∈ E satisfies that if v ∈ C, then λ v ∈ C for
every λ ≥ 0.

Definition D.2. Given a family of vectors V ⊂ E.

1. A conic non–negative combination of elements in V is a vector of the form λ1v1 +
· · ·+ λrvr, with λi ≥ 0 and vi ∈ V for all i ∈ {1, . . . , r}.

2. The convex cone generated by V is the set of all conic non–negative combinations of
vectors in V .

3. An affine combination of elements in V is a vector of the form λ1v1 + · · ·+ λrvr, with
vi ∈ V , λi ∈ R for all i ∈ {1, . . . , r} and

∑r
i=1 λi = 1.

4. A convex combination of elements in V is a vector of the form λ1v1 + · · ·+ λrvr, with
vi ∈ V , 0 ≤ λi ≤ 1 for all i ∈ {1, . . . , r} and

∑r
i=1 λi = 1.

Remember that a set A ⊂ E is convex if, given two different elements in A, then any convex
combination of them is contained in A. Thus, all the convex combination of elements in A are
in A.
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Definition D.3. The convex hull of a set A ⊂ E, conv(A), is the smallest convex subset
containing A.

Let us prove a characterization of the convex hull that will be useful.

Proposition D.4. The convex hull of a set A is the set of the convex combinations of elements
in A.

Proof. Let us denote by C the set of all convex combinations of elements in A. First, we prove
that C is a convex set. If x, y are in C, then they are convex combinations of elements in A;
that is, x =

∑l
i=1 λivi, y =

∑r
i=1 µiwi, with

∑l
i=1 λi = 1,

∑r
i=1 µi = 1. For s ∈ (0, 1), consider

sx + (1− s)y = s

(
l∑

i=1

λivi

)
+ (1− s)

(
r∑

i=1

µiwi

)
,

that will be in C if the sum of the coefficients is equal to 1 and each of the coefficients lies in
[0, 1]. Observe that s

∑l
i=1 λi + (1 − s)

∑r
i=1 µi = s + (1 − s) = 1 and the other condition is

satisfied trivially. As C is convex and contains A, the convex hull of A is a subset of C.

Second, we prove that C ⊂ conv(A) by induction on the number of vectors in the convex
combinations of elements in A. Trivially, when the convex combination is given by an element
in A, it lies in the convex hull of A.

Now, suppose that a convex combination of l− 1 elements of A is in conv(A), and we prove
that a convex combination of l elements of A is in conv(A). Let

x =
l∑

i=1

µivi =
l−1∑
i=1

µivi + µlvl.

If
∑l−1

i=1 µi = 0, then µl = 1. By the first step of the induction, x is in conv(A). If
∑l−1

i=1 µi ∈ (0, 1],
then µl ∈ [0, 1) and we can rewrite x as

x = (1− µl)

(
l−1∑
i=1

µi(1− µl)−1vi

)
+ µlvl.

Observe that
∑l−1

i=1 µi(1 − µl)−1 = (1 − µl)(1 − µl)−1 = 1, and so
∑l−1

i=1 µi(1 − µl)−1vi is in
conv(A). By the first step of induction, vl is in conv(A). As (1− µl) + µl = 1, x is in conv(A)
because of the convexity of conv(A). Thus C ⊂ conv(A) and so C = conv(A).

Proposition D.5. Let C be a convex set. If C and int C are the topological closure and the
interior of C, respectively, we have:

(a) for every x ∈ int C, if y ∈ C, then (1− λ)x + λy ∈ int C for all λ ∈ [0, 1);

(b) C = int C;

(c) the interior of C is empty if and only if the interior of C is empty;

(d) int C = int C.

Proof. (a) If x ∈ int C, then there exists εx > 0 such that B(x, εx) ⊂ C, where B(x, εx) denotes
the open ball centered at x of radius εx.

Observe that if y ∈ C, for any ε > 0, y ∈ C + εB(0, 1) = {x + εz |x ∈ C, z ∈ B(0, 1)}.
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For every λ ∈ [0, 1), we consider xλ = (1 − λ)x + λy. Let us compute the value of ελ such
that xλ + ελB(0, 1) ⊂ C.

xλ + ελB(0, 1) = (1− λ)x + λy + ελB(0, 1)

⊂ (1− λ)x + λC + λεB(0, 1) + ελB(0, 1) = (1− λ)x + (λε + ελ)B(0, 1) + λC.

If ελ = (1 − λ)εx − λε, then (1 − λ)x + (λε + ελ)B(0, 1) ⊂ (1 − λ)C and xλ + ελB(0, 1) ⊂ C.
For ε > 0 small enough, ελ is positive. Here we use the sum operation of convex sets, which
is well–defined if the coefficients are positive (if C1 and C2 are convex sets, µ1C1 + µ2C2 is a
convex set for all µ1, µ2 ≥ 0).

(b) As int C ⊂ C, int C ⊂ C.

On the other hand, each point in the closure of C can be approached along a line segment
by points in the interior of C by (a). Thus C ⊂ int C.

(c) As int C ⊂ int C, if int C is empty, then int C is empty.

Conversely, if int C is empty, then by (b) C is empty. So C is empty and int C is also empty.

(d) Trivially int C ⊂ int C.

As the equality of the sets is true when they are empty because of (c), let us suppose that
int C is not empty. If z ∈ int C and take x ∈ int C, then there exists a small enough positive
number δ such that y = z + δ(z − x) ∈ int C ⊂ C.

Hence,

z =
1

1 + δ
y +

δ

1 + δ
x.

Note that
0 <

1
1 + δ

< 1, 0 <
δ

1 + δ
< 1,

1
1 + δ

+
δ

1 + δ
= 1.

As y ∈ C, x ∈ int C and 1/(1 + δ) lies in (0, 1). By (a), z ∈ int C.

Remark D.6. Consequently, if C is convex and dense, then C is the whole space.

The following paragraphs introduce elements playing an important role in the proof of Pon-
tryagin’s Maximum Principle in §4 and §6.

Definition D.7. Let C be a cone with vertex at 0 ∈ E. A supporting hyperplane to C at 0
is a hyperplane such that C is contained in one of the half–spaces defined by the hyperplane.

Remark D.8. In a geometric framework, we will define a hyperplane in E as the kernel of a
nonzero 1–form α in the dual space E∗. Then the hyperplane Pα associated to α is kerα. Hence
the supporting hyperplane to C at 0 is a hyperplane Pα such that α(v) ≤ 0 for all v ∈ C. A
supporting hyperplane to C at 0 is not necessarily unique.

From now on, we consider that all the cones have vertex at 0.

Definition D.9. Let C be a cone, the polar of C is

C∗ = {α ∈ E∗ | α(v) ≤ 0 , ∀ v ∈ C}.

Note that the polar of a cone is a closed and convex cone in E∗.
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Definition D.10. Let C be a cone, the set

C∗∗ = {w ∈ E | α(w) ≤ 0 , ∀α ∈ C∗}

is called the polar of the polar of C.

Observe that C ⊂ C∗∗. The following lemma is used in the proof of the existence of a
supporting hyperplane to a cone with vertex at 0.

Lemma D.11. The cone C is closed and convex if and only if C∗∗ = C.

Proof. Observe that

C∗∗ = {w ∈ E | α(w) ≤ 0 , ∀α ∈ C∗} =
⋂

α∈C∗

{w ∈ E | α(w) ≤ 0}.

Then C∗∗ = conv(C), because of Theorem 6.20 in Rockafellar [65]: the closure of the convex
hull of a set is the intersection of all the closed half–spaces containing the set. Now, the result
is immediate.

The following proposition guarantees the existence of a supporting hyperplane to a cone with
vertex at 0. This result is used throughout the proof of Pontryagin’s Maximum Principle in §4
and §6.

Proposition D.12. If C is a convex and closed cone that is not the whole space, then there
exists a supporting hyperplane to C at 0.

Proof. If there is no supporting hyperplane containing the cone in one of the two half–spaces,
then for all α ∈ E∗ there exist v1, v2 ∈ C with α(v1) ≤ 0 and α(v2) ≥ 0. Thus C∗ = {0} and
C∗∗ = E. Then, by Lemma D.11, C = C∗∗ = E in contradiction with the hypothesis on C.

Corollary D.13. If C is a convex cone that is not the whole space, then there exists a supporting
hyperplane to C at 0.

Proof. If C 6= E, then C 6= E by Proposition D.5 (d). Hence, by Proposition D.12, there exists
a supporting hyperplane to C which is also a supporting hyperplane to C.

Definition D.14. Let C1 and C2 be cones with common vertex 0. They are separated if there
exists a hyperplane P such that each cone lies in a different closed half–space defined by P . This
P is called a separating hyperplane of C1 and C2.

A point x is a relative interior point of a set C, if x ∈ C and there exists a neighbourhood
V of x such that V ∩ aff(V ) ⊆ V . Then, a useful characterization of separated convex cones is
the following:

Proposition D.15. The convex cones C1 and C2, with common vertex 0, are separated if and
only if one of the two following conditions are satisfied:

(1) there exists a hyperplane containing both C1 and C2,

(2) there is no point that is a relative interior point of both C1 and C2.
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Proof. ⇒ If C1 and C2 are separated, then there exists a separating hyperplane Pα such that

α(v1) ≤ 0 ∀ v1 ∈ C1, α(v2) ≥ 0 ∀ v2 ∈ C2.

If α(vi) = 0 for all vi ∈ Ci and i = 1, 2, then we are in the first case.

If some vi ∈ Ci satisfies the strict inequality, then both sets do not lie in the hyperplane Pα.
They lie in a different closed half–space. If the convex cones intersect, the intersection lies in
the boundary of the cones and in the hyperplane. Hence, there is no point that is a relative
interior point of both C1 and C2.

⇐ First, we are going to prove that if (1) is true, then C1 and C2 are separated. As there
exists a hyperplane determined by α such that α(vi) = 0 for all vi ∈ Ci, α determines a separating
hyperplane of C1 and C2.

Now, we are going to prove that if (2) is true, then C1 and C2 are separated. As C1 and C2

are convex cones,
C1 − C2 = {u ∈ E | u = v1 − v2, v1 ∈ C1, v2 ∈ C2}

is a convex cone. Since there is no relative interior point of both C1 and C2, 0 does not lie
in C1 − C2. By Corollary D.13 there exists a supporting hyperplane Pα to C1 − C2 such that
α(v1 − v2) ≤ 0, that is, α(v1) ≤ α(v2), for all v1 ∈ C1, v2 ∈ C2.

Observe that a supporting hyperplane to C1−C2 is a supporting hyperplane to C1, because,
taking v2 = 0, α(v1) ≤ α(v2) = 0 for all v1 ∈ C1.

As ∂(C1 − C2) ∩ C1 ⊂ ∂C1, we consider a supporting hyperplane Pα to C1 − C2 such that
α(v1) = 0 for some v1 ∈ ∂C1. Hence α(v2) ≥ α(v1) = 0 for all v2 ∈ C2. As α(v1) ≤ 0 for all
v1 ∈ C1, α determines a separating hyperplane of C1 and C2.

This proposition gives us necessary and sufficient conditions for the existence of a separating
hyperplane of two convex cones with common vertex. Observe that a separating hyperplane of
two cones with common vertex is also a supporting hyperplane to each cone at the vertex.

Corollary D.16. If the convex cones C1 and C2 with common vertex 0 are not separated, then
E = C1 − C2.

Proof. If the cones are not separated, by Proposition D.15 there exists no any hyperplane con-
taining both and the intersection of their relative interior is not empty.

Let us suppose that the convex cone C1 − C2 6= E. Then, by Corollary D.13, there exists a
supporting hyperplane determined by λ at the vertex such that λ(v) ≥ 0 for every v in C1−C2.

Because of the definition of cones, if v1 ∈ C1, then v1 ∈ C1−C2 and λ(v1) ≥ 0. Analogously,
if v2 ∈ C2, then −v2 ∈ C1 − C2 and λ(−v2) ≥ 0, that is, λ(v2) ≤ 0.

E One corollary of Brouwer Fixed–Point Theorem

From the statement of Brouwer Fixed–point Theorem, it is possible to prove a corollary in [53]
useful for the proof of Proposition 3.12.

Theorem E.1. (Brouwer Fixed–point Theorem) Let Bn
1 be the closed unit ball in Rn. Any

continuous function G : Bn
1 → Bn

1 has a fixed point.

Corollary E.2. Let g : Bn
1 → Rn be a continuous map. Let P be an interior point of Bn

1 . If
‖g(x)− x‖ < ‖x− P‖ for every x in the boundary ∂Bn

1 , then the image g(Bn
1 ) covers P .
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Proof. Without loss of generality, we assume that P is the origin of Rn. Consider the mapping
g as a continuous vector field on the unit ball Bn

1 .

As ‖g(x)−x‖ < ‖x‖, we are going to show that g(x) makes an acute angle with the outward
ray from the origin through x for every x ∈ ∂Bn. Let us consider the equality

‖y − z‖2 + ‖z − x‖2 = ‖y − x‖2 + 2〈y − z, x− z〉,

and take y = g(x) and z = 0. Then

2〈g(x), x〉 = ‖g(x)‖2 + ‖x‖2 − ‖g(x)− x‖2 > ‖g(x)‖2 + ‖x‖2 − ‖x‖2 = ‖g(x)‖2 ≥ 0.

Thus g(x) makes an acute angle with x. So g(x) has an outward radial component at every point
x ∈ ∂Bn

1 . The vector −g(x) has a negative radial component. For a sufficiently small positive
number α the function x → x − α g(x) goes from Bn

1 to Bn
1 . By Theorem E.1 there exists a

fixed point x0 such that x0 = x0 − α g(x0), then α g(x0) = 0 and g(x0) = 0 since α ∈ R+. As g
is continuous and g(x0) = 0, the image of a neighbourhood of x0 covers the origin.
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