39 research outputs found

    Geometric phases in polarization mixed states

    Get PDF
    Debido a la generalidad de su formulaci贸n, las fases geom茅tricas han sido objeto de constantes investigaciones en 谩reas muy diversas y han llevado a muchos desarrollos, tanto en aplicaciones como en trabajo te贸rico. Esta tesis se incluye dentro de las investigaciones experimentales y se enfoca en las fases geom茅tricas que aparecen al manipular el grado de libertad de polarizaci贸n. Se divide en dos partes. La primera se centra en los aspectos te贸ricos esenciales que definen y relacionan los estados mixtos de polarizaci贸n con la luz l谩ser parcialmente polarizada, y en las propiedades de las fases geom茅tricas que aparecen en los primeros. La segunda parte presenta dos arreglos experimentales, uno que genera estados polarizaci贸n y uno que permite medir la fase geom茅trica adquirida por dichos estados despu茅s de alguna evoluci贸n unitaria. El primero otorga un control casi arbitrario del estado de polarizaci贸n de la luz l谩ser que deja el arreglo y, con una ligera modificaci贸n, puede utilizarse en fotones individuales con casi id茅ntica efectividad. El segundo utiliza al primero para generar estados mixtos de polarizaci贸n y luego los somete a distintas evoluciones. Las fases geom茅tricas adquiridas son entonces determinadas mediante su relaci贸n con las fases de Pancharatnam correspondientes, que son cantidades directamente observables. Si bien hubo casos en los que la fase no se pudo determinar debido a su sensibilidad a errores experimentales, en aquellas mediciones en las que se pudo obtener un valor experimental este se ajust贸 muy bien a la predicci贸n te贸rica.Tesi

    Spin squeezing in mixed-dimensional anisotropic lattice models

    Full text link
    We describe a theoretical scheme for generating scalable spin squeezing with nearest-neighbour interactions between spin-1/2 particles in a 3D lattice, which are naturally present in state-of-the-art 3D optical lattice clocks. We propose to use strong isotropic Heisenberg interactions within individual planes of the lattice, forcing the constituent spin-1/2s to behave as large collective spins. These large spins are then coupled with XXZ anisotropic interactions along a third direction of the lattice. This system can be realized via superexchange interactions in a 3D optical lattice subject to an external linear potential, such as gravity, and in the presence of spin-orbit coupling (SOC) to generate spin anisotropic interactions. We show there is a wide range of parameters in this setting where the spin squeezing improves with increasing system size even in the presence of holes.Comment: 13+9 pages, 8+1 figure

    Photon-mediated correlated hopping in a synthetic ladder

    Full text link
    We propose a new direction in quantum simulation that uses multilevel atoms in an optical cavity as a toolbox to engineer new types of bosonic models featuring correlated hopping processes in a synthetic ladder spanned by atomic ground states. The underlying mechanisms responsible for correlated hopping are collective cavity-mediated interactions that dress a manifold of excited levels in the far detuned limit. By weakly coupling the ground state levels to these dressed states using two laser drives with appropriate detunings, one can engineer correlated hopping processes while suppressing undesired single-particle and collective shifts of the ground state levels. We discuss the rich many-body dynamics that can be realized in the synthetic ladder including pair production processes, chiral transport and light-cone correlation spreading. The latter illustrates that an effective notion of locality can be engineered in a system with fully collective interactions.Comment: 6+9 pages, 4+4 figure

    Fast generation of spin squeezing via resonant spin-boson coupling

    Full text link
    We propose protocols for the creation of useful entangled states in a system of spins collectively coupled to a bosonic mode, directly applicable to trapped-ion and cavity QED setups. The protocols use coherent manipulations of the spin-boson interactions naturally arising in these systems to prepare spin squeezed states exponentially fast in time. We demonstrate the robustness of the protocols by analyzing the effects of natural sources of decoherence in these systems and show their advantage compared to more standard slower approaches where entanglement is generated algebraically with time.Comment: 6 pages, 4 figures (18 pages, 8 figures with appendices
    corecore