7 research outputs found

    Quartz crystals in Toba rhyolites show textures symptomatic of rapid crystallization

    No full text
    Textural and chemical heterogeneities in igneous quartz crystals preserve unique records of silicic magma evolution, yet their origins and applications are controversial. To improve our understanding of quartz textures and their formation, we examine those in crystal-laden rhyolites produced by the 74 ka Toba supereruption (\u3e2800 km3) and its post-caldera extrusions. Quartz crystals in these deposits can reach unusually large sizes (10–20 mm) and are rife with imperfections and disequilibrium features, including embayments, melt inclusions, titanomagnetite and apatite inclusions, spongy morphologies, hollow faces, subgrain boundaries, multiple growth centers, and Ti-enriched arborescent zoning. Using a combination of qualitative and quantitative analyses (petrography, CL, EBSD, X-ray CT, LA-ICPMS), we determine that those textures commonly thought to signify crystal resorption, crystal deformation, synneusis, or fluctuating P–T conditions are here a consequence of rapid disequilibrium crystal growth. Most importantly, we discover that an overarching process of disequilibrium crystallization is manifested among these crystal features. We propose a model whereby early skeletal to dendritic quartz growth creates a causal sequence of textures derived from lattice mistakes that then proliferate during subsequent stages of slower polyhedral growth. In a reversed sequence, the same structural instabilities and defects form when slow polyhedral growth transitions late to fast skeletal-dendritic growth. Such morphological transitions result in texture interdependencies that become recorded in the textural-chemical stratigraphy of quartz, which may be unique to each crystal. Similar findings in petrologic experimental studies allow us to trace the textural network back to strong degrees of undercooling and supersaturation in the host melt, conditions likely introduced by dynamic magmatic processes acting on short geologic timescales. Because the textural network can manifest in single crystals, the overall morphology and chemistry of erupted quartz can reflect not only its last but its earliest growth behavior in the melt. Thus, our findings imply that thermodynamic disequilibrium crystallization can account for primary textural and chemical heterogeneities preserved in igneous quartz and may impact the application of quartz as a petrologic tool

    The enigmatic origin and emplacement of the Samosir Island lava domes, Toba Caldera, Sumatra, Indonesia

    No full text
    The 60 × 20-km Samosir resurgent dome within the 74-ka Toba Caldera features several clusters of rhyolitic lava domes. Because the previously known Tuk-Tuk and Samosir Fault lava domes occur near the base of a major resurgent dome fault, they appear associated with resurgent uplift, and dating them could provide constraints on the timing of resurgence. Towards that goal, we mapped and sampled the Tuk-Tuk and Samosir Fault lava domes, discovered two additional lava dome clusters in the uplifted interior of Samosir Island, then determined modal mineralogy, major and trace element geochemistry, and 40Ar/39Ar sanidine ages on several samples from each cluster. These quartz-bearing rhyolite lava domes have SiO2 contents ranging from ~ 70-76 wt%, crystallinities of 28-54%, and 40Ar/39Ar ages (~ 74-76 ka) that overlap with those of the Youngest Toba Tuff (YTT), ~ 74-75 ka. Our field observations and the remarkable similarity in mineralogy, geochemistry, and ages among the dome clusters and YTT support the interpretation that these domes represent remnant YTT magma that erupted shortly after the climactic YTT eruption. Later, during resurgence, these pre-resurgent lava domes were uplifted to their present locations, some near current lake level, others up to 440 m above lake level

    A Review of Domestic-Hybrid Mutual Funds

    No full text
    corecore