4 research outputs found

    Control of oceanic circulation on sediment distribution in the southwestern Atlantic margin (23 to 55Âș S)

    Get PDF
    In this study, we interpret the role played by ocean circulation in sediment distribution on the southwestern Atlantic margin using radiogenic Nd and Pb isotopes. The latitudinal trends for Pb and Nd isotopes reflect the different current systems acting on the margin. The utilization of the sediment fingerprinting method allowed us to associate the isotopic signatures with the main oceanographic features in the area. We recognized differences between Nd and Pb sources to the Argentinean shelf (carried by the flow of Subantarctic Shelf Water) and slopes (transported by deeper flows). Sediments from Antarctica extend up to the Uruguayan margin, carried by the Upper and Lower Circumpolar Deep Water. Our data confirm that, for shelf and intermediate areas (the upper 1200 m), the transfer of sediments from the Argentinean margin to the north of 35∘ S is limited by the Subtropical Shelf Front and the basin-wide recirculated Antarctic Intermediate Water. On the southern Brazilian inner and middle shelf, it is possible to recognize the northward influence of the Río de la Plata sediments carried by the Plata Plume Water. Another flow responsible for sediment transport and deposition on the outer shelf and slope is the southward flow of the Brazil Current. Finally, we propose that the Brazil–Malvinas Confluence and the Santos Bifurcation act as boundaries of geochemical provinces in the area. A conceptual model of sediment sources and transport is provided for the southwestern Atlantic margin

    On the Mechanisms Driving Latent Heat Flux Variations in the Northwest Tropical Atlantic

    No full text
    International audienceAbstract The Northwest Tropical Atlantic (NWTA) is a region of complex surface ocean circulation. The most prominent feature is the North Brazil Current (NBC) and its retroflection at 8°N, which leads to the formation of numerous mesoscale eddies known as NBC rings. The NWTA also receives the outflow of the Amazon River, generating freshwater plumes that can extend up to 100,000 km 2 . We show that these two processes influence the spatial variability of the region's surface latent heat flux (LHF). On the one hand, the presence of surface freshwater modifies the vertical stratification of the ocean, the mixed layer heat budget, and thus the air‐sea heat exchanges. On the other hand, NBC rings create a highly heterogeneous mesoscale sea surface temperature (SST) field that directly influences the near‐surface atmospheric circulation. These effects are illustrated by observations from the ElUcidating the RolE of Cloud‐Circulation Coupling in ClimAte ‐ Ocean Atmosphere (EUREC 4 A‐OA) and Atlantic Tradewind Ocean‐Atmosphere Interaction Campaign (ATOMIC) experiments, satellite and reanalysis data. We decompose the LHF budget into several terms controlled by different atmospheric and oceanic processes to identify the mechanisms leading to LHF changes. We find LHF variations of up to 160 W m 2 , of which 100 W m 2 are associated with wind speed changes and 40 W m 2 with SST variations. Surface currents or heat release associated with stratification changes remain as second‐order contributions with LHF variations of less than 10 W m 2 each. This study highlights the importance of considering these three components to properly characterize LHF variability at different spatial scales, although it is limited by the scarcity of collocated observations
    corecore