68 research outputs found

    New strontium-based coatings show activity against pathogenic bacteria in spine infection

    Get PDF
    Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 mu m, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction

    Loxosceles gaucho Venom-Induced Acute Kidney Injury – In Vivo and In Vitro Studies

    Get PDF
    Loxosceles (recluse or brown spider) is the most important spider genus causing human envenomation. In Brazil Loxosceles spiders were responsible for approximately 7,000 cases of spider envenomation per year. The brown spider accidents may cause late cutaneous necrosis at the bite site, intravascular hemolysis, rhabdomyolysis, coagulation system changes and acute kidney injury (AKI). Even patients with mild cutaneous lesion may develop severe hemolysis and AKI, which is the main cause of death after these accidents. The mechanisms causing kidney injury are poorly understood. In this manuscript we described a consistent rodent model of Loxosceles gaucho venom-induced AKI and studied some of the possible mechanisms of the renal lesion. The results of this research showed that kidney injury may occur independently of the cutaneous lesion and without changes in the systemic blood pressure. Kidney dysfunction occurred likely due to intra-renal vasoconstriction and rhabdomyolysis, although a direct toxic effect of the venom on the proximal tubules cannot be ruled out

    Caracterizacao parcial do veneno da aranha loxoscele gaucho

    No full text
    BV UNIFESP: Teses e dissertaçõe

    Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia

    Get PDF
    The aim of this study was to describe a new pathogenic variant in the mutational hot spot exon ORF15 of retinitis pigmentosa GTPase regulator (RPGR) gene within an Italian family with X-linked retinitis pigmentosa (RP), detailing its distinctive genotype-phenotype correlation with pathologic myopia (PM). All members of this RP-PM family underwent a complete ophthalmic examination. The entire open reading frames of RPGR and retinitis pigmentosa 2 genes were analyzed by Sanger sequencing. A novel frame-shift mutation in exon ORF15 of RPGR gene (c.2091_2092insA; p.A697fs) was identified as hemizygous variant in the male proband with RP, and as heterozygous variant in the females of this pedigree who invariably exhibited symmetrical PM in both eyes. The c.2091_2092insA mutation coherently co-segregated with the observed phenotypes. These findings expand the spectrum of X-linked RP variants. Interestingly, focusing on Caucasian ethnicity, just three RPGR mutations are hitherto reported in RP-PM families: one of these is located in exon ORF15, but none appears to be characterized by a high penetrance of PM trait as observed in the present, relatively small, pedigree. The geno-phenotypic attributes of this heterozygosity suggest that gain-of-function mechanism could give rise to PM via a degenerative cell-cell remodeling of the retinal structures

    Electrospun poly(D, L-lactide)/gelatin/glass-ceramics tricomponent nanofibrous scaffold for bone tissue engineering

    No full text
    Electrospun scaffolds are emerging as extracellular (ECM) mimicking structures for tissue engineering thanks to their nanofibrous architecture. For the development of suitable electrospun scaffolds for bone tissue engineering the addition of inorganic components has been implemented with the aim to confer important bioactivity like osteoinduction, osteointegration and cell adhesion to the scaffolds. In this context we propose a tricomponent electrospun scaffold composed of poly(D,L-lactide), gelatin and RKKP glass-ceramics. The bioactive RKKP glass-ceramic system has attracted interest, due to the presence of ions such as La3+ and Ta5+, which turned out to be valuable as growth supporting agents for bones. In this work, RKKP glass-ceramics were embedded inside the microfibers of electrospun scaffolds and the structural and biological properties were investigated. Our results showed that the glass-ceramic microparticles were uniformly distributed in the fibrous structure of the scaffold. Furthermore, the glass-ceramics promoted biomineralization of the scaffolds and improved cell viability and osteogenic differentiation. The mineralized layer formed on RKKP -containing scaffolds after incubation in simulated body fluid medium has been shown to be hydroxyapatite by Raman spectroscopy and X-ray diffraction. The results on differentiation studies of canine adipose-derived mesenchymal stem cells (cAMSC) grown on the electrospun scaffolds suggest that on varying the content of RKKP in the scaffold, it is possible to drive the differentiation toward chondrogenic or osteogenic commitment. The presence of ions, like La3+ and Ta5+, in the RKKP embedded polymeric composite scaffolds could play a role in supporting cell growth and promoting differentiation

    Recombinant Phospholipase D from Loxosceles gaucho Binds to Platelets and Promotes Phosphatidylserine Exposure

    No full text
    Spider envenomation, from the genus Loxosceles, is frequently reported as a cause of necrotic lesions in humans around the world. Among the many components found in the venom of Loxosceles genus, phospholipases D (PLDs) are the most investigated, since they can cause a massive inflammatory response, dermonecrosis, hemolysis and platelet aggregation, among other effects. Even though the PLDs induce strong platelet aggregation, there are no studies showing how the PLDs interact with platelets to promote this effect. Since many agonists must interact with specific receptors on the platelet membrane to induce aggregation, it is reasonable to expect that the PLDs may, in some way, also interact with platelets, to induce this activity. Therefore, to address this possibility, in this work, a recombinant PLD, called LgRec1, from L. gaucho was fused to enhanced green fluorescent protein (EGFP) and used as a probe to detect the interaction of LgRec1 to platelets, by fluorescence-activated cell sorter (FACS) and confocal microscopy. The preservation of biological activities of this chimera toxin was also analyzed. As a first, the results show that LgRec1 does not require plasma components to bind to platelets, although these components are necessary to LgRec1 to induce platelet aggregation. Also, the attachment of LgRec1 to human platelets’ cell membranes suggests that the exposure of phosphatidylserine (PS) may act as a scaffold for coagulation factors. Therefore, the results add new information about the binding of Loxosceles PLDs to platelets, which may help unravel how these toxins promote platelet aggregation

    Predatory behavior of three centipede species of the order Scolopendromorpha (Arthropoda: Myriapoda: Chilopoda)

    No full text
    ABSTRACT Studies related to centipede feeding and predatory behavior are rare in the literature, and are limited to observations made during fieldwork. Furthermore, they lack descriptions of prey capture. We conducted a laboratory experiment using South American specimens of Scolopendra viridicornis Newport, 1844 (n = 5), Otostigmus tibialis Brölemann, 1902 (n = 5), and Cryptops iheringi Brölemann, 1902 (n = 5), as well as 13 different kinds of prey, to map and describe their predatory behavior. The analysis of video images (65 hours of recordings) resulted in 15 behavioral categories that describe foraging, prey capture, feeding, and cleaning habits. Almost all observations (95%) concluded with the centipede killing the prey. Although we witnessed that a stimulus triggered the movement of the centipede toward the prey in all observation events (suggesting a sit-and-wait strategy), our experiments also showed that these arthropods actively forage to seek food. Field observations during the experiment allowed us to document that scolopendromorphs feed on plants when animal prey items are not available. Moreover, we observed that the size and aggressiveness of the prey determined the centipede capture process. Our results revealed that two behavioral categories were performed only by S. viridicornis , and thus might be genus or species-specific. These are: raising the first third of the body while the rest of the body remains adjacent to the substrate; and restraining the prey along the ventral region of the first third of the body with the aid of locomotory legs. We also observed some peculiar behaviors performed only by O. tibialis . Our results confirm that S. viridicornis , O. tibialis and C. iheringi hold prey between their ultimate pair of legs

    Modification of PMMA Cements for Cranioplasty with Bioactive Glass and Copper Doped Tricalcium Phosphate Particles

    No full text
    Cranioplasty represents the surgical repair of bone defects or deformities in the cranium arising from traumatic skull bone fracture, cranial bone deformities, bone cancer, and infections. The actual gold standard in surgery procedures for cranioplasty involves the use of biocompatible materials, and repair or regeneration of large cranial defects is particularly challenging from both a functional and aesthetic point of view. PMMA-based bone cement are the most widely biomaterials adopted in the field, with at least four different surgical approaches. Modifications for improving biological and mechanical functions of PMMA-based bone cement have been suggested. To this aim, the inclusion of antibiotics to prevent infection has been shown to provide a reduction of mechanical properties in bending. Therefore, the development of novel antibacterial active agents to overcome issues related to mechanical properties and bacterial resistance to antibiotics is still encouraged. In this context, mechanical, biological, and antibacterial feature against P. aeruginosa and S. aureus bacterial strains of surgical PMMA cement modified with BG and recently developed Cu-TCP bioactive particles have been highlighted

    <i>Bothrops jararaca</i> Venom Metalloproteinases Are Essential for Coagulopathy and Increase Plasma Tissue Factor Levels during Envenomation

    No full text
    <div><p>Background/Aims</p><p>Bleeding tendency, coagulopathy and platelet disorders are recurrent manifestations in snakebites occurring worldwide. We reasoned that by damaging tissues and/or activating cells at the site of the bite and systemically, snake venom toxins might release or decrypt tissue factor (TF), resulting in activation of blood coagulation and aggravation of the bleeding tendency. Thus, we addressed (a) whether TF and protein disulfide isomerase (PDI), an oxireductase involved in TF encryption/decryption, were altered in experimental snake envenomation; (b) the involvement and significance of snake venom metalloproteinases (SVMP) and serine proteinases (SVSP) to hemostatic disturbances.</p><p>Methods/Principal Findings</p><p>Crude <i>Bothrops jararaca</i> venom (BjV) was preincubated with Na<sub>2</sub>-EDTA or AEBSF, which are inhibitors of SVMP and SVSP, respectively, and injected subcutaneously or intravenously into rats to analyze the contribution of local lesion to the development of hemostatic disturbances. Samples of blood, lung and skin were collected and analyzed at 3 and 6 h. Platelet counts were markedly diminished in rats, and neither Na<sub>2</sub>-EDTA nor AEBSF could effectively abrogate this fall. However, Na<sub>2</sub>-EDTA markedly reduced plasma fibrinogen consumption and hemorrhage at the site of BjV inoculation. Na<sub>2</sub>-EDTA also abolished the marked elevation in TF levels in plasma at 3 and 6 h, by both administration routes. Moreover, increased TF activity was also noticed in lung and skin tissue samples at 6 h. However, factor VII levels did not decrease over time. PDI expression in skin was normal at 3 h, and downregulated at 6 h in all groups treated with BjV.</p><p>Conclusions</p><p>SVMP induce coagulopathy, hemorrhage and increased TF levels in plasma, but neither SVMP nor SVSP are directly involved in thrombocytopenia. High levels of TF in plasma and TF decryption occur during snake envenomation, like true disseminated intravascular coagulation syndrome, and might be implicated in engendering bleeding manifestations in severely-envenomed patients.</p></div
    • …
    corecore