461 research outputs found

    Dissociations within nondeclarative memory in Huntington's disease.

    Get PDF

    Decoding Continuous Variables from Neuroimaging Data: Basic and Clinical Applications

    Get PDF
    The application of statistical machine learning techniques to neuroimaging data has allowed researchers to decode the cognitive and disease states of participants. The majority of studies using these techniques have focused on pattern classification to decode the type of object a participant is viewing, the type of cognitive task a participant is completing, or the disease state of a participant's brain. However, an emerging body of literature is extending these classification studies to the decoding of values of continuous variables (such as age, cognitive characteristics, or neuropsychological state) using high-dimensional regression methods. This review details the methods used in such analyses and describes recent results. We provide specific examples of studies which have used this approach to answer novel questions about age and cognitive and disease states. We conclude that while there is still much to learn about these methods, they provide useful information about the relationship between neural activity and age, cognitive state, and disease state, which could not have been obtained using traditional univariate analytical methods

    Decoding Developmental Differences and Individual Variability in Response Inhibition Through Predictive Analyses Across Individuals

    Get PDF
    Response inhibition is thought to improve throughout childhood and into adulthood. Despite the relationship between age and the ability to stop ongoing behavior, questions remain regarding whether these age-related changes reflect improvements in response inhibition or in other factors that contribute to response performance variability. Functional neuroimaging data shows age-related changes in neural activity during response inhibition. While traditional methods of exploring neuroimaging data are limited to determining correlational relationships, newer methods can determine predictability and can begin to answer these questions. Therefore, the goal of the current study was to determine which aspects of neural function predict individual differences in age, inhibitory function, response speed, and response time variability. We administered a stop-signal task requiring rapid inhibition of ongoing motor responses to healthy participants aged 9–30. We conducted a standard analysis using GLM and a predictive analysis using high-dimensional regression methods. During successful response inhibition we found regions typically involved in motor control, such as the ACC and striatum, that were correlated with either age, response inhibition (as indexed by stop-signal reaction time; SSRT), response speed, or response time variability. However, when examining which variables neural data could predict, we found that age and SSRT, but not speed or variability of response execution, were predicted by neural activity during successful response inhibition. This predictive relationship provides novel evidence that developmental differences and individual differences in response inhibition are related specifically to inhibitory processes. More generally, this study demonstrates a new approach to identifying the neurocognitive bases of individual differences

    Age-related differences in memory after attending to distinctiveness or similarity during learning

    Full text link
    Episodic memory is vulnerable to age-related change, with older adults demonstrating both impairments in retrieving contextual details and susceptibility to interference among similar events. Such impairments may be due in part to an age-related decline in the ability to encode distinct memory representations. Recent research has examined how manipulating stimulus properties to emphasize distinctiveness can reduce age-related deficits in memory. However, few studies have addressed whether learning strategies that differentially encourage distinctiveness processing attenuate age-related differences in episodic memory. In the present study, participants engaged in two incidental encoding tasks emphasizing either distinctiveness or similarity processing. Results demonstrated higher rates of recollection for stimuli studied under the distinctiveness task than the similarity task in younger but not older adults. These findings suggest a declining capacity for distinctiveness processing to benefit memory in older adults, and raise the possibility that strategies that enhance gist-based encoding may attenuate age-related memory deficits

    Dissociations within nondeclarative memory in Huntington's disease.

    Full text link

    Specific responses of human hippocampal neurons are associated with better memory

    Get PDF
    A population of human hippocampal neurons has shown responses to individual concepts (e.g., Jennifer Aniston) that generalize to different instances of the concept. However, recordings from the rodent hippocampus suggest an important function of these neurons is their ability to discriminate overlapping representations, or pattern separate, a process that may facilitate discrimination of similar events for successful memory. In the current study, we explored whether human hippocampal neurons can also demonstrate the ability to discriminate between overlapping representations and whether this selectivity could be directly related to memory performance. We show that among medial temporal lobe (MTL) neurons, certain populations of neurons are selective for a previously studied (target) image in that they show a significant decrease in firing rate to very similar (lure) images. We found that a greater proportion of these neurons can be found in the hippocampus compared with other MTL regions, and that memory for individual items is correlated to the degree of selectivity of hippocampal neurons responsive to those items. Moreover, a greater proportion of hippocampal neurons showed selective firing for target images in good compared with poor performers, with overall memory performance correlated with hippocampal selectivity. In contrast, selectivity in other MTL regions was not associated with memory performance. These findings show that a substantial proportion of human hippocampal neurons encode specific memories that support the discrimination of overlapping representations. These results also provide previously unidentified evidence consistent with a unique role of the human hippocampus in orthogonalization of representations in declarative memory
    • …
    corecore