714 research outputs found

    Physical exercise for bone health in men with prostate cancer receiving androgen deprivation therapy: a systematic review

    Get PDF
    PURPOSE: Androgen deprivation therapy (ADT) is a treatment used in men with prostate cancer (PCa); however it is responsible for many adverse effects, with negative impact on quality of life. ADT causes loss of bone mineral density (BMD) and skeletal muscle mass, alteration of body composition, and cognitive function, which altogether lead to increased risk of accidental falls and fractures. This systematic review analyses the effectiveness of physical exercise (PE) in preventing accidental falls and fractures and reducing the loss of BMD in men with PCa receiving ADT.METHODS: We searched MEDLINE, EMBASE, CINAHL, and the Cochrane Library for articles between database inception and September 2, 2020. Eligible studies included randomized controlled trials (RCTs) investigating the effects of exercise on bone health in men with PCa receiving ADT.RESULTS: Nine RCTs were included. Experimental PE consisted in multicomponent programmes that involved aerobic, resistance, impact-loading exercise, and football training. None of the RCTs investigated the risk of accidental falls and fractures, while two trials reported beneficial effects of PE on lumbar spine, hip, and femoral shaft BMD. No further significant difference was detected in the outcomes investigated.CONCLUSION: Evidence of the effectiveness of PE to prevent the risk of accidental falls and fractures and BMD loss is lacking. Nevertheless, clinical guidelines recommend PE as a part of the clinical management of men with PCa receiving ADT due to its known numerous health benefits. Research should focus on PE strategies to prevent accidental falls, a clinically relevant outcome in this vulnerable population.TRIAL REGISTRATION: The study protocol was registered with International Prospective Register of Systematic Reviews (PROSPERO, number CRD 42020158444 ) on 04/28/2020

    Photocatalytic activity of nanotubular TiO2films obtained by anodic oxidation: A comparison in gas and liquid phase

    Get PDF
    The availability of immobilized nanostructured photocatalysts is of great importance in the purification of both polluted air and liquids (e.g., industrial wastewaters). Metal-supported titanium dioxide films with nanotubular morphology and good photocatalytic efficiency in both environments can be produced by anodic oxidation, which avoids release of nanoscale materials in the environment. Here we evaluate the effect of different anodizing procedures on the photocatalytic activity of TiO2nanostructures in gas and liquid phases, in order to identify the most efficient and robust technique for the production of TiO2layers with different morphologies and high photocatalytic activity in both phases. Rhodamine B and toluene were used as model pollutants in the two media, respectively. It was found that the role of the anodizing electrolyte is particularly crucial, as it provides substantial differences in the oxide specific surface area: nanotubular structures show remarkably different activities, especially in gas phase degradation reactions, and within nanotubular structures, those produced by organic electrolytes lead to better photocatalytic activity in both conditions tested

    miR-221 affects multiple cancer pathways by modulating the level of hundreds messenger RNAs.

    Get PDF
    microRNA miR-221 is frequently over-expressed in a variety of human neoplasms. Aim of this study was to identify new miR-221 gene targets to improve our understanding on the molecular tumor-promoting mechanisms affected by miR-221. Gene expression profiling of miR-221-transfected-SNU-398 cells was analyzed by the Sylamer algorithm to verify the enrichment of miR-221 targets among down-modulated genes. This analysis revealed that enforced expression of miR-221 in SNU-398 cells caused the down-regulation of 602 mRNAs carrying sequences homologous to miR-221 seed sequence within their 3'UTRs. Pathways analysis performed on these genes revealed their prominent involvement in cell proliferation and apoptosis. Activation of E2F, MYC, NFkB, and β-catenin pathways was experimentally proven. Some of the new miR-221 target genes, including RB1, WEE1 (cell cycle inhibitors), APAF1 (pro-apoptotic), ANXA1, CTCF (transcriptional repressor), were individually validated as miR-221 targets in SNU-398, HepG2, and HEK293 cell lines. By identifying a large set of miR-221 gene targets, this study improves our knowledge about miR-221 molecular mechanisms involved in tumorigenesis. The modulation of mRNA level of 602 genes confirms the ability of miR-221 to promote cancer by affecting multiple oncogenic pathways

    miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the EÎĽ-TCL1 mouse model

    Get PDF
    The involvement of microRNAs (miRNAs) in chronic lymphocytic leukemia (CLL) pathogenesis suggests the possibility of anti-CLL therapeutic approaches based on miRNAs. Here, we used the Eµ-TCL1 transgenic mouse model, which reproduces leukemia with a similar course and distinct immunophenotype as human B-CLL, to test miR-181b as a therapeutic agent.In vitro enforced expression of miR-181b mimics induced significant apoptotic effects in human B-cell lines (RAJI, EHEB), as well as in mouse Eµ-TCL1 leukemic splenocytes. Molecular analyses revealed that miR-181b not only affected the expression of TCL1, Bcl2 and Mcl1 anti-apoptotic proteins, but also reduced the levels of Akt and phospho-Erk1/2. Notably, a siRNA anti-TCL1 could similarly down-modulate TCL1, but exhibited a reduced or absent activity in other relevant proteins, as well as a reduced effect on cell apoptosis and viability. In vivo studies demonstrated the capability of miR-181b to reduce leukemic cell expansion and to increase survival of treated mice.These data indicate that miR-181b exerts a broad range of actions, affecting proliferative, survival and apoptotic pathways, both in mice and human cells, and can potentially be used to reduce expansion of B-CLL leukemic cells

    Vaccination of mice for research purpose: alum is as effective as and safer than complete Freund adjuvant.

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease involving many organ systems. Glomerulonephritis (GLN) is one of the major causes of morbidity and mortality in SLE. It has recently been demonstrated that adjuvants of vaccines could cause the so called ASIA syndrome. The study aimed to assess the effects of Complete Freund's Adjuvant (CFA) vs alum injections in NZB/NZWF1 mice. Mice (n=10 each group) were injected with a total volume of 200 μL of: CFA in PBS (group 1), alum in PBS (group 2), PBS (group 3) as controls, PTX3/CFA (group 4), PTX3/alum (group 5), 3 times, 3 weeks apart /given in each injection, three weeks apart from ten weeks of age. Urine samples were collected weekly to evaluate proteinuria. Blood samples were collected before every injection, at 21 weeks of age, and at death to evaluate levels of anti-PTX3 and anti-dsDNA. Proteinuria free survival and survival rates were analyzed by the Kaplan-Meier method using Mantel-Cox's test for comparisons. CFA-treated mice developed both anti-dsDNA antibodies and proteinuria earlier and at higher levels than alumtreated and PBS-injected mice, starting from 13 weeks of age. Proteinuria free survival rates (proteinuria ≥300 mg/dL) and survival rates were lower in CFA-treated mice than those treated with alum or injected with PBS (P<0.001 for all). No difference was observed between the alum-treated group and PBS-injected mice. Notably, groups 4 and 5, immunized with PTX3, developed anti-PTX3 antibodies and no significant difference was observed. Alum seems to be as effective as and safer than CFA as adjuvant, since it did not affect disease progression in immunized NZB/NZWF1 mice

    FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    Get PDF
    Background: FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Methods: Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. Results: PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 7 10-4) and CT-CTV (p = 2.9 7 10-4). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 7 10-5) and CT-CTV (p = 6 7 10-5). Conclusions: FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

    Neurological manifestations of COVID-19 in adults and children

    Get PDF
    Different neurological manifestations of coronavirus disease 2019 (COVID-19) in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicentre observational study using the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) cohort across 1507 sites worldwide from 30 January 2020 to 25 May 2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models. Overall, 161 239 patients (158 267 adults; 2972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%) and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%) and CNS infection (0.2%). Each occurred more frequently in intensive care unit (ICU) than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU versus non-ICU (7.1% versus 2.3%, P &lt; 0.001). Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age. In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age.</p

    The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells

    Get PDF
    The protein product of the ocular albinism type 1 gene, named OA1, is a pigment cell-specific G protein-coupled receptor exclusively localized to intracellular organelles, namely lysosomes and melanosomes. Loss of OA1 function leads to the formation of macromelanosomes, suggesting that this receptor is implicated in organelle biogenesis, however the mechanism involved in the pathogenesis of the disease remains obscure. We report here the identification of an unexpected abnormality in melanosome distribution both in retinal pigment epithelium (RPE) and skin melanocytes of Oa1-knock-out (KO) mice, consisting in a displacement of the organelles from the central cytoplasm towards the cell periphery. Despite their depletion from the microtubule (MT)-enriched perinuclear region, Oa1-KO melanosomes were able to aggregate at the centrosome upon disruption of the actin cytoskeleton or expression of a dominant-negative construct of myosin Va. Consistently, quantification of organelle transport in living cells revealed that Oa1-KO melanosomes displayed a severe reduction in MT-based motility; however, this defect was rescued to normal following inhibition of actin-dependent capture at the cell periphery. Together, these data point to a defective regulation of organelle transport in the absence of OA1 and imply that the cytoskeleton might represent a downstream effector of this receptor. Furthermore, our results enlighten a novel function for OA1 in pigment cells and suggest that ocular albinism type 1 might result from a different pathogenetic mechanism than previously thought, based on an organelle-autonomous signalling pathway implicated in the regulation of both membrane traffic and transport

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets
    • …
    corecore