40 research outputs found
Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity.
Perineuronal nets (PNNs) are unique extracellular matrix structures that wrap around certain neurons in the CNS during development and control plasticity in the adult CNS. They appear to contribute to a wide range of diseases/disorders of the brain, are involved in recovery from spinal cord injury, and are altered during aging, learning and memory, and after exposure to drugs of abuse. Here the focus is on how a major component of PNNs, chondroitin sulfate proteoglycans, control plasticity, and on the role of PNNs in memory in normal aging, in a tauopathy model of Alzheimer's disease, and in drug addiction. Also discussed is how altered extracellular matrix/PNN formation during development may produce synaptic pathology associated with schizophrenia, bipolar disorder, major depression, and autism spectrum disorders. Understanding the molecular underpinnings of how PNNs are altered in normal physiology and disease will offer insights into new treatment approaches for these diseases
Impact of Perineuronal Net Removal in the Rat Medial Prefrontal Cortex on Parvalbumin Interneurons After Reinstatement of Cocaine Conditioned Place Preference
Parvalbumin (PV)-positive cells are GABAergic fast-spiking interneurons that modulate the activity of pyramidal neurons in the medial prefrontal cortex (mPFC) and their output to brain areas associated with learning and memory. The majority of PV cells within the mPFC are surrounded by a specialized extracellular matrix structure called the perineuronal net (PNN). We have shown that removal of PNNs with the enzyme chondroitinase-ABC (Ch-ABC) in the mPFC prevents the consolidation and reconsolidation of cocaine-associated conditioned place preference (CPP) memories. Here we examined the extent to which retrieval of a CPP memory during cocaine-primed reinstatement altered the levels and function of PV neurons and their surrounding PNNs during the reconsolidation period. We further determined the extent to which PNN removal prior to reinstatement altered PV intensity levels and PV cell function. Male Sprague-Dawley rats were trained for cocaine-induced conditioned place preference (CPP) followed by extinction training, microinjection of Ch-ABC in the prelimbic PFC, and cocaine-induced reinstatement. Rats were sacrificed immediately prior to reinstatement or at 2 h, 6 h, or 48 h after reinstatement for immunohistochemistry or 2 h later for electrophysiology. Our findings indicate that PNN removal only partially diminished reinstatement. Cocaine-primed reinstatement produced only minor changes in PNN or PV intensity in vehicle controls. However, after PNN removal, the intensity of remaining PNN-surrounded PV cells was decreased at all times except at 2 h post-reinstatement, at which time cocaine increased PV intensity. Consistent with this, in vehicle controls, PV neurons naturally devoid of PNNs showed a similar pattern to Ch-ABC-treated rats prior to and after cocaine reinstatement, suggesting a protective effect of PNNs on cocaine-induced changes in PV intensity. Using whole-cell patch-clamp, cocaine-primed reinstatement in Ch-ABC-treated rats decreased the number of elicited action potentials but increased excitatory synaptic transmission, which may have been compensatory. These findings suggest that without PNNs, cocaine-induced reinstatement produces rapid changes in PV intensity and PV cell excitability, which may in turn regulate output of the mPFC post-memory retrieval and diminish the maintenance of cocaine memory during reconsolidation
A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction
The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
A Systematic Review of Extracellular Matrix-Related Alterations in Parkinson’s Disease
The role of the extracellular matrix (ECM) in Parkinson’s disease (PD) is not well understood, even though it is critical for neuronal structure and signaling. This systematic review identified the top deregulated ECM-related pathways in studies that used gene set enrichment analyses (GSEA) to document transcriptomic, proteomic, or genomic alterations in PD. PubMed and Google scholar were searched for transcriptomics, proteomics, or genomics studies that employed GSEA on data from PD tissues or cells and reported ECM-related pathways among the top-10 most enriched versus controls. Twenty-seven studies were included, two of which used multiple omics analyses. Transcriptomics and proteomics studies were conducted on a variety of tissue and cell types. Of the 17 transcriptomics studies (16 data sets), 13 identified one or more adhesion pathways in the top-10 deregulated gene sets or pathways, primarily related to cell adhesion and focal adhesion. Among the 8 proteomics studies, 5 identified altered overarching ECM gene sets or pathways among the top 10. Among the 4 genomics studies, 3 identified focal adhesion pathways among the top 10. The findings summarized here suggest that ECM organization/structure and cell adhesion (particularly focal adhesion) are altered in PD and should be the focus of future studies
Caught in the Net: Perineuronal Nets and Addiction
Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM). Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs). This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction
A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity
Perineuronal nets (PNNs) are aggregations of extracellular matrix molecules that are critical for plasticity. Their altered development or changes during adulthood appear to contribute to a wide range of diseases/disorders of the brain. An increasing number of studies examining the contribution of PNN to various behaviors and types of plasticity have analyzed the fluorescence intensity of Wisteria floribunda agglutinin (WFA) as an indirect measure of the maturity of PNNs, with brighter WFA staining corresponding to a more mature PNN and dim WFA staining corresponding to an immature PNN. However, a clearly-defined and unified method for assessing the intensity of PNNs is critical to allow us to make comparisons across studies and to advance our understanding of how PNN plasticity contributes to normal brain function and brain disease states. Here we examined methods of PNN intensity quantification and demonstrate that creating a region of interest around each PNN and subtracting appropriate background is a viable method for PNN intensity quantification that can be automated. This method produces less variability and bias across experiments compared to other published analyses, and this method increases reproducibility and reliability of PNN intensity measures, which is critical for comparisons across studies in this emerging field
Inactivation of the paraventricular thalamus abolishes the expression of cocaine conditioned place preference in rats
The paraventricular thalamus (PVT) is rapidly becoming recognized as part of the addiction circuitry. In addition to its strong anatomical connection to most of the brain regions underlying addiction, such as the nucleus accumbens, prefrontal cortex, amygdala, and hippocampus, the PVT has recently been shown to contribute to cocaine sensitization and reinstatement. In the present study, we examined the role of the PVT in the expression of cocaine conditioned place preference (CPP).
We tested the impact of PVT inactivation by baclofen/muscimol (bac-mus) microinjection on the expression of cocaine-induced CPP in rats. Rats were implanted with guide cannulae into the PVT. Bac-mus (GABAB-GABAA agonists) or saline was injected into the PVT prior to CPP testing.
Inactivation of the PVT by bac-mus prevented the expression of CPP, while placements outside the PVT did not affect CPP. Intra-PVT injections of bac-mus did not affect locomotor activity during the session.
In the present study, we contribute to the growing body of research supporting a role for the PVT in addiction by demonstrating that the PVT is necessary for the expression of cocaine CPP