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Perineuronal nets (PNNs) are unique extracellular matrix structures that wrap around certain neurons in the CNS during development
and control plasticity in the adult CNS. They appear to contribute to a wide range of diseases/disorders of the brain, are involved in
recovery from spinal cord injury, and are altered during aging, learning and memory, and after exposure to drugs of abuse. Here the focus
is on how a major component of PNNs, chondroitin sulfate proteoglycans, control plasticity, and on the role of PNNs in memory in normal
aging, in a tauopathy model of Alzheimer’s disease, and in drug addiction. Also discussed is how altered extracellular matrix/PNN
formation during development may produce synaptic pathology associated with schizophrenia, bipolar disorder, major depression, and
autism spectrum disorders. Understanding the molecular underpinnings of how PNNs are altered in normal physiology and disease will
offer insights into new treatment approaches for these diseases.
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Introduction
An emerging concept in neuroscience is that brain plasticity is
dependent not only on neurons and glial cells, but also on what is
present on the outside of these cells, the extracellular matrix
(ECM). This matrix comprises �20% of the brain’s volume
(Nicholson and Syková, 1998) and critically contributes to com-
munication between neurons and glia. Advances in our under-
standing of the ECM has led to progression from the tripartite
theory of synaptic signaling (Araque et al., 1999) to the tetrapar-
tite theory (Dityatev and Rusakov, 2011). If we are to understand

normal physiological functioning of the brain, such as learning
and memory as well as pathologies underlying brain disorders,
we must integrate the contribution by ECM molecules into our
understanding of brain signaling processes.

There are three major types of ECM: (1) the “loose” ECM,
which is present throughout the brain and spinal cord; (2) the
membrane-bound molecules on cells; and (3) the unique, lattice-
like structures that wrap around specific neurons in the brain and
spinal cord called perineuronal nets (PNNs), which tightly inter-
digitate with synaptic contacts on the soma and proximal den-
drites of neurons (Celio et al., 1998; Deepa et al., 2006; Soleman et
al., 2013). The focus of this review is on PNNs: their basic struc-
ture, function, and role in normal physiological function and
brain disorders. PNNs were first described as reticular structures
by Golgi in the late 1800s (Spreafico et al., 1999), but only recently
has there been intense focus on the role of PNNs in normal brain
function, such as learning and memory, and in many disorders or
pathologies, such as schizophrenia, Alzheimer’s stroke, epilepsy,
autism, and drug addiction.

PNNs are unevenly distributed throughout the brain and spinal
cord (Seeger et al., 1994). They form during development at different
rates across the brain and spinal cord (Brückner et al., 2000; Brück-
ner and Grosche, 2001), completed by early adulthood in the cortex
of rodents (Pizzorusso et al., 2002), with differences in developmen-
tal rates among cortical subregions (B.A.S. laboratory, unpublished
observations). Neural activity promotes PNN development, which
occurs at least partly through changes in potassium and calcium
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conductance, and through activation of glutamate receptors
(NMDA receptors and calcium-permeable AMPA receptors) (Kalb
and Hockfield, 1990; Brückner and Grosche, 2001; Dityatev et al.,
2007).

The developmental time window for PNN formation is signif-
icant because it marks the period when plasticity is greatly re-
duced and when the critical period ends. PNNs have been heavily
studied for their contributions to critical period plasticity within
the visual system, motor system, and somatosensory system (Piz-
zorusso et al., 2002; Barritt et al., 2006; Massey et al., 2006). A
centralizing concept is that PNNs limit plasticity in adulthood
and that they can be degraded to reinstate juvenile-like states of
plasticity to produce axon sprouting and regeneration of func-
tion in damaged neurons. As such, PNNs play key roles in neural
development, synaptogenesis, neuroprotection, and experience-
dependent synaptic plasticity (Celio et al., 1998; Dityatev and
Schachner, 2003; McRae and Porter, 2012; Soleman et al., 2013;
Suttkus et al., 2016).

Composition and function of PNNs
PNNs are formed by four families of ECM molecules. (1) Hyaluro-
nan and its synthesizing enzymes hyaluronan synthases (HASs;
HAS1 and HAS3 are found in the CNS); hyaluronin is extruded
extracellularly and forms a backbone onto which other PNN mole-
cules bind. (2) Chondroitin sulfate proteoglycans (CSPGs; �15 iso-
forms are identified in the CNS; for greater detail on the role of
CSPGs, see below). Among CSPGs, lectican family members, in-
cluding aggrecan, versican, neurocan, and brevican, are principal
constituents of PNNs (Galtrey and Fawcett, 2007; Kwok et al., 2011).
Whereas mice deficient for versican, neurocan, or brevican have
largely normal PNNs (Dours-Zimmermann et al., 2009), cortical
primary neurons derived from aggrecan-deficient mice are abnor-
mal in that they are not stained by the lectin Wisteria floribunda
agglutinin, a broad PNN marker, indicating an essential role for
aggrecan in PNN formation (Giamanco et al., 2010). (3) Tenascins
(Tn-R is a key component in PNNs). (4) Hyaluronan and proteogly-
can link proteins (HAPLNs; HAPLN 1, 3, and 4 are found in the
CNS), or simply, “link proteins,” which bind to both the hyaluronin
backbone and CSPGs to stabilize PNNs (Köppe et al., 1997; Carulli et
al., 2007, 2010; Kwok et al., 2010). Link proteins are found in PNNs
but not in the loose ECM (Fawcett, 2009). The combination of these
molecules creates PNNs of large variety and confers them with di-
verse biochemical properties. The complexity is further stratified by
other modifications, such as sulfation in the chondroitin sulfate (CS)
chains (Wang et al., 2008; Lin et al., 2011; Miyata et al., 2012) (for
detailed role of CS chains, see below). The composition of CSPGs in
PNNs has been distinguished from that present in the loose ECM by
using extraction procedures (Deepa et al., 2006). The composition of
PNNs varies across brain regions and spinal cord (Matthews et al.,
2002; Vitellaro-Zuccarello et al., 2007) and their appearance is dif-
ferent; for example, in some brain regions, PNNs appear as distinct
structures that are separate from the loose ECM, whereas in the
ventral spinal cord, they are denser with higher intensity labeling of
PNNs and the surrounding neuropil (Vitellaro-Zuccarello et al.,
2007). Heterogeneity in PNNs and the cell types surrounded by
PNNs exists within a single region. For example, in the spinal cord,
certain subregions have high levels of CSPGs in PNNs and the pres-
ence of the Kv3.1b subunit of the potassium channel, which confers
the fast-firing properties in neurons (see paragraph below), whereas
other neurons in the spinal cord have low levels of CSPGs in their
PNNs and low levels of the Kv3.1b subunit (Vitellaro-Zuccarello et
al., 2007).

In general, PNNs are found primarily around fast-spiking,
parvalbumin (PV)-containing GABAergic interneurons within
many brain regions (Härtig et al., 1992; Schüppel et al., 2002;
Dityatev et al., 2007). However, PNNs also surround glutamater-
gic neurons (Wegner et al., 2003; Mészár et al., 2012; Horii-
Hayashi et al., 2015; Vazquez-Sanroman et al., 2015a; Yamada et
al., 2015), which can be both PV positive or negative (Mészár et
al., 2012; Horii-Hayashi et al., 2015). Given their location sur-
rounding fast-spiking interneurons, PNNs are in a prime posi-
tion to alter the excitatory/inhibitory balance and thus regulate
output of these regions. PNNs are thought to protect neurons
from oxidative stress (Morawski et al., 2004; Cabungcal et al.,
2013), perhaps by limiting GABAergic interneuron excitability. It
is hypothesized that PNNs play a role in regulating neural plas-
ticity via three mechanisms (Fig. 1) (Wang and Fawcett, 2012):
(1) altering the formation of new neuronal contacts (Corvetti and
Rossi, 2005; Barritt et al., 2006); (2) acting as a scaffold for mol-
ecules that can inhibit synaptic formation (Deepa et al., 2002);
and (3) limiting receptor motility at synapses (Frischknecht et al.,
2009).

Role of CSPGs during development
CSPGs consist of core proteins with one or more covalently attached
CS chains. Studies from the H.K. laboratory have focused on the role
of sulfation patterns of CSPGs in neural development. The impor-
tance of sulfation patterns of CS chains in such plasticity has been
overlooked in previous studies because chondroitinase-ABC (Ch-
ABC) destroys all CS chains, regardless of CS sulfation status. CS
chains are long linear polysaccharides composed of repeating disac-
charide units; each unit comprises a glucuronic acid and an N-
acetylgalactosamine residue. During biosynthesis, individual
N-acetylgalactosamine residues of the repeated disaccharide units
can be sulfated by chondroitin 6-O-sulfotransferase-1 (C6ST-1) or
chondroitin 4-O-sulfotransferase-1, thereby generating 6-sulfation
or 4-sulfation, respectively (Mikami and Kitagawa, 2013; Miyata and
Kitagawa, 2015).

Notably, there are drastic changes in the sulfation patterns
of CS chains during the formation of PNNs. Specifically, 6-O-
sulfation is dominant in the juvenile brain to produce C6S,
which is more permissive (Lin et al., 2011; Miyata et al., 2012),
whereas 4-O-sulfation becomes dominant in the adult brain to
produce chondroitin sulfate with 4-O-sulfation (C4S), which
is the most inhibitory form of CS: it inhibits the growth of
cerebellar granular neurons in culture and is upregulated in
regions that do not support axonal growth after spinal cord
injury (Deepa et al., 2006; Wang et al., 2008). Overall then,
there is a substantial increase in the 4-sulfation/6-sulfation
(C4S/C6S) ratio during brain development (Kitagawa et al.,
1997; Miyata et al., 2012). The percentages of both C6S and
another isoform, chondroitin 4,6-disulfate (CS-E), decrease
drastically after birth and remain at a low level in adults. How-
ever, there is an enrichment of C6S and CS-E in the PNNs
compared with the CSs isolated from the loose brain ECM
(Deepa et al., 2006; Dick et al., 2013). The shift in sulfation
patterns is essential for PNN formation: transgenic mice with
reduced C6S show poor regeneration after a lesion in the CNS
(Lin et al., 2011), and transgenic mice overexpressing C6ST-1
retain juvenile-like CS sulfation and show impaired PNN for-
mation (Miyata et al., 2012). In addition, overexpression of
C6ST-1 prevents the maturation of electrophysiological prop-
erties of PV-expressing interneurons and reduces the inhibi-
tory effects of these PV cells because of impaired PNN
formation. As a result, transgenic mice overexpressing C6ST-1
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retain a juvenile level of ocular dominance plasticity even in
adulthood (Miyata et al., 2012). Interestingly, overexpression
of C6ST-1 selectively decreases aggrecan in the aged brain
without affecting other PNN components. In addition, the
increased 6-sulfation accelerates proteolysis of aggrecan by a
disintegrin and metalloproteinase domain with thrombos-
pondin motif (ADAMTS) protease (Miyata and Kitagawa,
2016). These results indicate that sulfation patterns of CS
chains on aggrecan influence the stability of the CSPG, thereby
regulating formation of PNNs and neural plasticity, and over-
all, the CS chains regulate the plasticity characteristic of the
critical period.

Alteration of C6ST-1 expression and CS sulfation patterns
are found in brains of human patients with bipolar disorder or
schizophrenia and mice with cortical brain injury (Yi et al., 2012;
Okuda et al., 2014; Pantazopoulos et al., 2015) (see also below).
Notably, chondroitin 6-sulfation and chondroitin 6-sulfation-
enriched PNNs increase in the mouse cerebral cortex after kainic
acid treatment; simultaneously, chondroitin 4-sulfation-enriched
PNNs and the 4S/6S ratio decrease. Furthermore, C6ST-1 TG mice
are more susceptible to kainic acid-induced seizures than wild-type
mice (Yutsudo and Kitagawa, 2015). These results suggest that chon-
droitin 6-sulfation is relevant to epilepsy most likely because of dys-
regulated PNN formation and PV cell maturation, and that an

abnormal balance of 4-sulfation and 6-sulfation produced by both
neurons and astrocytes may contribute to the disease.

Role of PNNs in memory, aging, and an Alzheimer’s
disease model
Memory is a form of plasticity, so it is reasonable to ask whether
PNN interventions affect memory. The first memory model to be
explored was fear conditioning, which involves the amygdala.
Ch-ABC treatment does not affect fear conditioning, but it re-
stores the ability to reverse or unlearn the conditioning (Gogolla
et al., 2009). This enzyme treatment also enhances reversal learn-
ing in the auditory cortex (Happel et al., 2014). In contrast, PNN
removal has also been shown to prevent plasticity induced by fear
conditioning (Hylin et al., 2013) and impairs certain aspects of
learning/memory in animal models of addiction (see Addiction
models).

The J.W.F. laboratory has recently focused on object recogni-
tion memory, which relies on the tendency of rodents to investi-
gate novel objects in preference to familiar ones, and it relies on
the perirhinal cortex (PrC). Digestion of CSPGs in PrC or trans-
genic attenuation of PNNs had the effect of greatly extending
object memory, from 12 to 96 h (Romberg et al., 2013). This was
unexpected; greater plasticity might mean more rapid turnover.
A possible explanation came from the work of the Caroni labo-

Figure 1. Limitation of plasticity by PNNs via three mechanisms and reinstatement of plasticity by treatment with Ch-ABC. Plasticity involving PNN-surrounded neurons is limited by
the following: (a) a physical barrier by PNNs to incoming synaptic inputs; (b) binding of molecules via specific sites on CSPGs of PNNs (molecules, such as semaphorin 3A, inhibit new
synaptic inputs); and (c) prevention of lateral diffusion of AMPA receptors, limiting the ability to exchange desensitized receptors in the synapse for new receptors from extrasynaptic
sites. Treatment with Ch-ABC disrupts PNNs, reinstating juvenile-like states of plasticity. HA, Hyaluronic acid; HAS, hyaluronic acid synthase. Figure courtesy of J.C.F. Kwok. Modified from
Wang and Fawcett (2012), with permission.
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ratory, looking at synaptic changes during memory. In the
hippocampus, a memory task leads to an increased number of
inhibitory synapses on PV interneurons, reducing their GABA
production and thereby promoting cortical excitability (Donato
et al., 2013). Ch-ABC treatment has exactly the same effect on this
late-born population of PV neurons in both the hippocampus
and PrC, providing a possible link to the effect of PNN removal
on memory.

Prolongation of object memory is probably not very useful.
However, in situations where memory is defective, restoration
would be valuable. Transgenic mice that overexpress a mutant
form of tau that gives tauopathy and dementia in humans pro-
vide a model for Alzheimer’s disease and related conditions (Al-
len et al., 2002). These mice develop neurofibrillary tangles and
hyperphosphorylation of tau, with obviously dystrophic neurons
by 3 months and neuronal loss after 4 months. This translates to
a profound loss of object memory by 3 months. Treating these
animals with Ch-ABC to the PrC restored object memory to nor-
mal levels (Yang et al., 2015), and transgenic attenuation of PNNs
in tauopathy mice delays by several weeks the onset of memory
loss. How might these interventions act to restore memory? Two
mechanisms are likely: (1) Ch-ABC treatment enables sprouting
of axons to create bypass circuits, and this may enable the CNS to
bypass dysfunctional neurons affected by tau pathology; and (2)
removal of PNNs may make it easier for memories to form, based
on easier access for new inhibitory synapses onto PV neurons,
leading to reduced GABA inhibition of cortical circuits.

Memory loss is a feature of aging even in the absence of Alz-
heimer’s disease. This can be seen in aged mice, which have a
marked deficit in memory retention at 18 months of age. Again,
Ch-ABC injections to the PrC can restore object memory, or
injections to the hippocampus restore object place memory (S.
Yang, unpublished results). The deterioration of memory with
age has usually been assumed to be caused by a decrease in the
number of synapses with age. However, there is a possible alter-
native PNN-based mechanism. The findings that CS sulfation
patterns are different across development together with the idea
that mice with enhanced C6S production have increased plastic-
ity prompted the J.C.K. and J.W.F. laboratories to ask the ques-
tion: do PNNs in aging brains, where plasticity has been
drastically reduced, show different sulfation composition than
young brains? Biochemical analysis of isolated brain glycans from
3- to 18-month old brains shows that there is a threefold reduc-
tion of C6S in the PNNs from 12- and 18-month old brains. This
reduction is specific to the PNNs and is not observed in young
brains or in the general brain ECM (S. Foscarin et al., unpub-
lished results). This change almost eliminates the permissive C6S,
leaving only 4-sulfated forms (D. Carulli, unpublished results).
This might be expected to make PNNs yet more inhibitory and to
block the formation of new synapses on PV neurons that underlie
memory.

These changes could explain the loss of plasticity in aged ani-
mals. In addition to acting directly on neuronal growth, CSs also
modulate growth and plasticity by binding to different molecules
in the ECM. The chemorepulsive molecule semaphorin 3A binds
specifically to PNNs via CS-E (found in adults), and this binding
exerts an additional level of inhibition of PNN matrix to the
growth of neurons (Dick et al., 2013; Vo et al., 2013). The tran-
scription factor Otx-2 also binds to the CS-E in the PNNs and
thus regulates the maturation of neurons and the duration of the
critical period, a time period when the CNS remains plastic dur-
ing visual cortex development (Beurdeley et al., 2012; Spatazza et
al., 2013). These studies suggest that the functions of PNNs are

heavily dependent on the composition of PNN components
and their assembly. They present a promising avenue for plas-
ticity enhancement to improve CNS pathologies through PNN
manipulation.

In summary, PNNs have many potential sites for therapeutic
action. Compounds acting on the PNN will not slow the progres-
sion of the pathology of Alzheimer’s disease or prevent aging.
However, based on the current rodent results, there is a strong
possibility that PNN interventions will enable the brain to keep
working despite the underlying pathology.

Role of PNNs in psychiatric disorders
Rapidly emerging evidence points to ECM abnormalities as a key
component of the pathophysiology of psychiatric disorders, in-
cluding schizophrenia (S.B. laboratory), bipolar disorder, major
depression, autism, and addiction (see Addiction models) (Ber-
retta, 2012; Folsom and Fatemi, 2013; Berretta et al., 2015).
Disruption of PNNs has been particularly well documented in
schizophrenia, with marked decreases of CSPG-labeled PNNs in
the amygdala, entorhinal cortex, and PFC (Pantazopoulos et al.,
2010, 2015; Mauney et al., 2013). These interconnected brain
regions are involved in emotion-related learning and associative
sensory information processing and in the pathophysiology of
this disorder (Prasad et al., 2004; Berretta et al., 2007; Pantazo-
poulos et al., 2015). PNN decreases are accompanied by altered
CSPG expression in glial cells (Pantazopoulos et al., 2010, 2015),
a significant finding because these cells represent the main con-
tributors to the ECM/PNNs molecular building blocks (Faissner
et al., 2010) (see also above). Additional support comes from
human genetic and postmortem studies pointing to the involve-
ment of key ECM/PNN molecules, including CSPGs, Reelin,
semaphorin 3A, integrins, and remodeling enzymes, such as
metalloproteinases in schizophrenia (Guidotti et al., 2000b; East-
wood et al., 2003; Schizophrenia Working Group of the Psychi-
atric Genomics Consortium, 2014).

Similar findings have been reported in bipolar disorder and
major depression. For instance, decreased Reelin expression has
been observed in the PFC, hippocampus, and cerebellum, as well
as in blood of subjects with bipolar disorder or major depression
(Guidotti et al., 2000a; Fatemi, 2005). Postmortem studies in the
S.B. laboratory on bipolar disorder show marked decreases of
PNNs across several nuclei in the amygdala (Pantazopoulos et al.,
2015).

Multiple lines of evidence implicate ECM abnormalities in
autism spectrum disorders. Genome-wide association studies on
autism implicate a number of ECM and PNN regulating mole-
cules, including the ECM remodeling enzymes, ECM molecules
Reelin, semaphorins 3A and 4D, the hyaluronan surface receptor
CD44, and Otx-2, a transcription factor involved in PNN forma-
tion (e.g.Weiss et al., 2009; Hussman et al., 2011). By far, the
strongest evidence for ECM involvement in the pathophysiology
of autism comes from investigations on Reelin. Consistent with
these findings, altered expression of Reelin and its signaling path-
ways has been observed in the frontal, parietal, and cerebellar
cortices of subjects with autism (Fatemi et al., 2005). Similarly,
involvement of ECM/PNN molecules has been reported in Frag-
ile X syndrome and Rett syndrome, this latter also shown to have
PNN abnormalities (Belichenko et al., 1997; Dziembowska et al.,
2013).

During development and in adulthood, ECM/PNN molecules
and their cell surface receptors mediate a broad range of synaptic
regulatory functions impacting dendritic spine and synapse
structure and plasticity as well as glutamatergic and GABAergic
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transmission (Faissner et al., 2010; Dityatev and Rusakov, 2011;
Frischknecht and Gundelfinger, 2012). Evolving in parallel with
our understanding of these functions, evidence for ECM/PNN
pathology in psychiatric disorders supports the intriguing hy-
pothesis that ECM/PNN abnormalities may contribute to a crit-
ical pathological component shared by psychiatric disorders (i.e.,
disruption of synaptic functions) (e.g., Penzes et al., 2013; Du-
man, 2014; Xu et al., 2014). These may include well-documented
synaptic pathology in these disorders, including loss of dendritic
spines, presynaptic and postsynaptic regulatory elements, and
disruption of glutamatergic synaptic signaling and GABAergic
inhibitory neuron functions. In addition to synaptic dysregula-
tion, critical functions performed by the ECM during brain de-
velopment and adulthood (Bandtlow and Zimmermann, 2000;
Tissir and Goffinet, 2003; Maeda et al., 2010; Kwok et al., 2011)
suggest that the consequences of brain ECM abnormalities in
psychiatric disorders may be complex and far-reaching, affecting
several aspects of neural connectivity (Rhodes and Fawcett, 2004;
Syková, 2004; Berretta, 2008, 2012; Fatemi, 2010; McRae and
Porter, 2012; Lubbers et al., 2014; Berretta et al., 2015; Fawcett,
2015).

Potentially integral to disruption of glutamatergic/GABAergic
function in psychiatric disorders (including addiction) is the
possibility that PNNs contribute substantially to the excitatory/
inhibitory balance because they surround PV-containing fast-
spiking GABAergic interneurons in the PFC. These interneurons
are central for generating gamma oscillations (30 –120 Hz), and
their removal alters these oscillations (Steullet et al., 2014).
Gamma oscillations underlie synchronous network activity that
mediates information processing and cognitive flexibility that is
impaired in schizophrenia (Cho et al., 2006, 2015; Minzenberg et
al., 2010), consistent with the observation that PV neurons do not
develop normally in schizophrenia (Lewis et al., 2005) or in au-
tism (Orekhova et al., 2007).

Role of PNNs in addiction models
Addiction is a psychiatric disease whose aberrant strength and
persistence of drug-induced memories are believed to have a pri-
mary role in drug seeking and relapse (Everitt and Robbins, 2005;
Kalivas and Volkow, 2005; Hyman et al., 2006). Cocaine-induced
neuroplasticity of the ECM has been reported in both cocaine-
dependent humans (Mash et al., 2007) and rodent models of
cocaine addiction (Van den Oever et al., 2010; Smith et al., 2014;
for review, see Lubbers et al., 2014; Smith et al., 2015). Relatively
few studies have characterized the expression of PNNs in brain
regions implicated in addiction: the striatum, ventral pallidum,
amygdala, PFC, hippocampus, hypothalamus, and cerebellum
(Härtig et al., 1992; Seeger et al., 1994; Bertolotto et al., 1996;
Hobohm et al., 1998).

The striatum, including the nucleus accumbens, caudate nu-
cleus, and putamen, is heavily implicated in reward and moti-
vated behaviors. Low levels of sporadic PNN staining have been
reported in all three regions of the striatum in the rat (Seeger et
al., 1994; Bertolotto et al., 1996); in contrast, in the mouse, sig-
nificant and functional PNN expression has been reported
throughout the striatum (Lee et al., 2012). The ventral pallidum is
essential for the integrative component of the limbic system con-
tributing to motivated behavior and drug seeking (Kalivas and
Volkow, 2005; Smith et al., 2009; Mahler et al., 2014). This region
exhibits robust PNN expression (Seeger et al., 1994), making it a
promising brain region with regard to the role of PNNs in moti-
vated behavior, but to date, it has not been studied in this context.

Only a handful of studies in rats and mice have thus far examined
the role of PNNs in addiction models (for review, see Slaker et al.,
2016), with a focus on the amygdala, the PFC (B.A.S. laboratory; see
below), and the cerebellum (M. M. laboratory; see below).

The amygdala is well situated between the PFC and the ventral
striatum to provide key neurocircuitry mediating both stress-
and cue-induced reinstatement of drug-seeking behavior (Cardi-
nal et al., 2002; Kalivas and Volkow, 2005). Studies on PNN
expression differ between species within the amygdala. Early
studies examining the amygdala of the rodent reported relatively
low PNN expression (Seeger et al., 1994; Bertolotto et al., 1996);
however, a study examining the BLA of humans reported signif-
icant PNN expression (Pantazopoulos et al., 2008). A more
recent study in the amygdala in rats has shown that PNN degra-
dation by Ch-ABC following drug exposure (morphine, co-
caine, and heroin) but before extinction training augments
extinction and inhibits subsequent reinstatement (relapse) of
drug-seeking behavior (Xue et al., 2014).

Proteins from the ECM, including those in PNNs, are de-
creased in the PFC after heroin self-administration but rapidly
elevated after reexposure to heroin-associated cues (Van den
Oever et al., 2010). The B.A.S. laboratory focused on the impact
of cocaine on PNNs in the mPFC and found that a single injection
of cocaine rapidly decreased PNN intensity 2 h later, whereas five
daily injections increased PNN intensity 2 h later (B.A.S., unpub-
lished findings); the latter finding is consistent with increased
PNN staining after repeated ethanol exposure in another cortical
region, the insular cortex (Chen et al., 2015). The potential sig-
nificance of initial decreases followed by later increases in PNN
intensity after drug exposure is the idea that decreased PNN
staining intensity appears to correspond to an immature
PNN with increased capacity for plasticity, whereas increased
PNN intensity corresponds to a mature PNN with decreased ca-
pacity for plasticity (Wang and Fawcett, 2012). The changes in
PNN intensity after cocaine are consistent with the idea that ini-
tial learning (1 d cocaine) decreases PNN intensity and may allow
for greater cocaine-induced plasticity, whereas repeated cocaine
(5 d cocaine) may “stamp in” synaptic changes, as discussed be-
low for the cerebellum, rendering the circuitry more impervious
to plasticity induced by other stimuli, such as natural rewards. In
addition, PV staining mirrored the changes in PNN staining after
cocaine, but the changes lagged behind those of PNNs, suggesting
that PNNs and PV may be coregulated in some way, and that
cocaine-induced changes may significantly alter GABAergic out-
put from these interneurons due to altered PV content (Donato
et al., 2013). Overall, cocaine-induced metaplasticity appears to
restrict the formation of new plasticity (Moussawi et al., 2009;
Kasanetz et al., 2010), setting in place neural connectivity under-
lying addictive behaviors, and PNNs may play a role in this re-
striction of plasticity. Interestingly, some of the effects of cocaine
on PV/PNN changes may be related to oxidative stress. Cocaine
produces oxidative stress in neurons (Dietrich et al., 2005; Numa
et al., 2008; Sordi et al., 2014; Jang et al., 2015). PNNs protect
against oxidative stress (Morawski et al., 2004; Cabungcal et al.,
2013), and consistent with this protection, unpublished findings
in the B.A.S. laboratory found that the antioxidant N-acetyl cys-
teine reverses the relatively small increases in an oxidative stress
marker in the mPFC after cocaine in PV neurons that are sur-
rounded by PNNs, but not the larger increases in this marker in
PV neurons devoid of PNNs.

The results that cocaine-induced plasticity restricts further plas-
ticity are in accordance with recent work demonstrating that degrad-
ing PNNs with Ch-ABC in the mPFC reduced the acquisition and/or
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maintenance (reconsolidation) of cocaine memory in a conditioned
place preference model of addiction in rats (Slaker et al., 2015) and
blunted the ability of rats to learn cocaine self-administration
(B.A.S., unpublished findings). In addition, PNNs in another brain
area contribute to cocaine-induced memories: a region of the ante-
rior dorsal lateral hypothalamic area was recently discovered to ex-
hibit a small patch of dense, robust PNN and loose ECM expression.
Degradation of this patch with Ch-ABC abolished the acquisition of
cocaine- but not sucrose-induced cocaine conditioned place prefer-
ence and also the acquisition of cocaine but not sucrose self-
administration (J.M.B., unpublished findings).

Consistent with the idea that cocaine alters the intensity of
PNNs and associated plasticity, studies in the M.M. laboratory
have focused on the role of the cerebellum in cocaine addiction
models; these studies suggest that local circuits in the apex of the
cerebellar cortex might be an important and largely overlooked
part of the networks involved in forming, maintaining and/or
retrieving drug memories that underlie relapse (Carbo-Gas et al.,
2014a, b; Miquel et al., 2016). Using a preference conditioning
paradigm with cocaine exposure, the Miquel laboratory observed
that PNNs surrounding Golgi inhibitory interneurons in the apex
of the cerebellar cortex are upregulated (more intensely labeled),
but only in those animals that prefer the cue associated with
cocaine (M. Miquel, unpublished data). Aside from more in-
tensely stained PNNs around Golgi neurons, neighboring gran-
ule cells show elevated levels of activity (estimated by cFos
expression) that correlates with preference toward the cocaine-
related cue (Carbo-Gas et al., 2014a, b). Remarkably, neither of
these distinctive cerebellar signatures occurs when animals do
not express cocaine-induced preference conditioning.

It is now clear that PNNs restrict the capacity of their wrapped
neurons for experience-dependent plasticity (Pizzorusso et al.,
2002). Of note, Golgi neurons play a crucial role in modulating
the activity and plasticity of local circuits in the cerebellar cortex
(Mapelli and D’Angelo, 2007; Roggeri et al., 2008; D’Angelo and
De Zeeuw, 2009; D’Angelo et al., 2013). Consequently, one could
speculate that a fully condensed PNN surrounding Golgi neu-
rons, which is found only in mice that have acquired conditioned
preference for cocaine, might “stamp in” synaptic changes related
to cue-drug associations, thereby preventing posterior synaptic
rearrangements in the local circuits of the granule cell layer.

Cocaine-induced changes in PNN expression in the cerebel-
lum show anatomical specificity and different functional regula-
tion. Indeed, PNNs that surround large glutamatergic projection
neurons in the medial deep cerebellar nucleus (DCN) are not
changed after acquisition of cocaine-induced preference mem-
ory, but after a short withdrawal period, the expression of PNNs
increases around DCN neurons (Vazquez-Sanroman et al.,
2015a). More intensely stained PNNs are associated with molec-
ular and structural plasticity changes in Purkinje cells that reduce
their capacity to inhibit DCN neurons. Following a longer with-
drawal period, Purkinje neurons develop opposite plasticity
changes, including dendritic sprouting and enlarged terminal
size (Vazquez-Sanroman et al., 2015b). In this case, PNNs are
downregulated in DCN neurons. More lightly stained PNNs (i.e.,
less PNN material around the cell) might facilitate the subsequent
remodeling of Purkinje-DCN synapses (Vazquez-Sanroman et
al., 2015b). Together, these findings point toward different func-
tions for cerebellar PNNs in drug-related plasticity. The PNNs
around Golgi neurons would act as “brain tattoos” (Hustvedt,
2014) to stabilize long-term drug memory encoded in local cir-
cuits of the cerebellar cortex. However, those that wrap DCN
projection neurons would serve as “temporary stickers” to dy-

namically control the cerebellar output by promoting or restrict-
ing plasticity in Purkinje-DCN synapses.

In summary, changes in PNNs are rapid and regulated by both
drug exposure and its associated memory. Although the changes in
PNN staining intensity (increases or decreases) are likely to depend
on the particular drug, the extent of drug exposure, and withdrawal
time from the drug, the functional outcome of these dynamic
changes has yet to been tested. Although the contribution of PNNs to
both drug-induced neuroplasticity and behavior is in its infancy,
increased PNN staining intensity found around neurons after re-
peated exposure to cocaine suggests that these neurons may be less
malleable to plasticity induced by naturally rewarding stimuli.

The emerging pattern of changes in PNNs after exposure to
drugs of abuse supports the concept that these structures regulate
plasticity and likely firing patterns of their underlying neurons,
which in turn alter drug-seeking behavior, making PNNs poten-
tial therapeutic targets in addiction.

Limitations, future directions, and conclusions
One of the current limitations in understanding the contribution
by PNNs in brain and spinal cord plasticity is that the enzyme
Ch-ABC has been used almost exclusively to degrade PNNs.
However, Ch-ABC also destroys the loose ECM, and therefore
the contribution of PNNs is not entirely clear. However, strong
evidence supports a key contribution by PNNs to critical period
closure for ocular dominance plasticity because knock-out mice
that lack a key link protein demonstrate reduced formation of
PNNs, but no changes in the loose ECM, and they maintain ju-
venile levels of ocular dominance plasticity (Carulli et al., 2010).
One potential future direction is to specifically knock down car-
tilage link protein-1 to reduce PNN formation (Carulli et al.,
2010) because this protein is found only in PNNs but not in loose
ECM (Galtrey et al., 2008). Unpublished findings (B.A.S.) dem-
onstrate that a morpholino that interferes with cartilage link
protein-1 expression reduces PNN intensity and number, but
future studies will need to determine the functional conse-
quences of this knockdown strategy. Other strategies are to target
local expression of Otx-2, which maintains PNNs (Beurdeley et
al., 2012; Bernard and Prochiantz, 2016), as well as other mole-
cules, such as semaphorin 3A, to regulate synaptic inputs (Dick et
al., 2013; Vo et al., 2013; de Winter et al., 2016) or neuronal
pentraxin-2 (NARP) (Gu et al., 2013), which regulates PV neu-
ron excitation through recruitment of glutamate (AMPA) recep-
tors (Chang et al., 2010; Pelkey et al., 2015).

In conclusion, recent discoveries show that PNN formation
contributes to a loss of brain plasticity in adults, and that brain
and spinal cord plasticity can be reestablished in adults after re-
moval of PNNs. Dynamic changes in PNNs appear after environ-
mental manipulations. Overall, decreases in PNN intensity may
be associated with increased inhibitory input to their underlying
neurons, whereas increases in PNN intensity may be associated
with increased excitatory input to these neurons. Increased excit-
atory input might be expected to promote PNN formation, given
that one proposed function of PNNs is to provide a highly an-
ionic environment to maintain ion-buffering capacity around
their typically highly active cells (Brückner et al., 1993; Härtig et
al., 1999). PNN formation may therefore limit firing to protect
neurons from oxidative stress, and as a consequence, reduce plas-
ticity in response to environmental stimuli-induced plasticity by
binding of PNNs to chemorepellant molecules, such as sema-
phorin 3A. This limitation of firing by PNNs is in accordance
with reports that removal of PNNs with Ch-ABC renders their
underlying neurons more active (Dityatev et al., 2007) and pro-

11464 • J. Neurosci., November 9, 2016 • 36(45):11459 –11468 Sorg et al. • Perineuronal Nets and Plasticity



duces greater high-frequency (� and �) oscillations (Steullet et
al., 2014) (B.A.S., unpublished observations).

The changes imposed by drug or environmental stimuli, in
addition to interference with normal development of PNNs, may
contribute to a wide range of diseases and disorders of the brain,
including Alzheimer’s, autism, epilepsy, schizophrenia, bipolar
disorder, aging, brain injury, and learning and memory, includ-
ing that associated with drug abuse. However, many questions
remain, including the functional significance of changes in stain-
ing intensity of PNNs and how PNN removal is capable of both
enhancing plasticity to imposed environmental stimuli, such as
repetitive motor movements after spinal cord damage but para-
doxically attenuating the learning/memory associated with other
environmental manipulations, such as fear conditioning and
drugs of abuse. Understanding the molecular underpinnings of
how PNNs are altered in normal physiology and disease is ex-
pected to offer insights into new treatment approaches for these
diseases.
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