2,771 research outputs found
Coping with the uncertainties of growth in Telluride, Colorado
Thesis (M.C.P.)--Massachusetts Institute of Technology, Dept. of Urban Studies and Planning, 1980.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.Bibliography: p. 164-165.by Barbara A. Cole.M.C.P
Survey of biosynthetic gene clusters from sequenced myxobacteria reveals unexplored biosynthetic potential
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Eleutherococcus senticosus Maxim. belongs to the Araliaceae family. Phytochemical studies reveal that E. senticosus leaves contain triterpene glycosides along with organic acid derivatives and flavonoid compounds. It is believed that E. senticosus is similar to ginseng because they come from same family and both contain triterpene saponins. E. senticosus leaves have been developed as a functional beverage called ci-wu-jia tea in recent years. Triterpene glycosides are difficult to identify by ultraviolet (UV) detection and contents of these compounds are low in E. senticosus leaves. In this study, a sensitive ultra-high performance liquid chromatographic (UHPLC) method combining UV and tandem mass spectrometry (MS/MS) was developed to characterize the triterpene glycosides from E. senticosus leaves and related commercial products. Fragmentation patterns of three sub-groups of triterpene glycosides in E. senticosus leaves were investigated. Additionally, fragmentation pathways and UV characteristics of organic acid derivatives and flavonoids were also characterized. A compound screening library, including 241 compounds reported in the literature, was created and used to confirm the compounds in the samples. In this study, a total of 24 samples, including 13 plant samples of E. senticosus and 11 ci-wu-jia tea products, were analyzed. Out of the 11 commercial products, three products were discovered to contain green tea (Camellia sinensis) that was considered to be an adulterant since it was not an ingredient on the labels. The developed UHPLC-UV-MS/MS analytical method combined with the UNIFI processing method can simultaneously characterize organic acid derivatives, flavonoids, and triterpene saponins from E. senticosus. It provides a simple and sensitive way to perform quality control of E. senticosus and related ci-wu-jia tea products
A Revolutionary Model to Improve Science Education, Teachers, and Scientists
To meet many modern global challenges, we need to promote scientific and technical literacy. The U.S. National Science Foundation (NSF) supports a “revolutionary” program to connect science education at all levels, from elementary through graduate school. The authors demonstrate how Maine has benefited from this program. They describe the University of Maine’s NSF-funded “GK-12 STEM” program, which placed graduate and advanced undergraduate science and technology students in elementary, middle, and high school classrooms; provided equipment for the schools; and offered training and professional development for the partner teachers. The authors urge the state, universities, and school districts to continue to use this model to increase science literacy and research capacity
Primary reading exercises for use with the Durrell Analysis of Reading Difficulty
Thesis (Ed.M.)--Boston Universit
GK-12: NSF Graduate Teaching Fellows in K-12 Education at the University of Maine
Eight districts in central Maine that comprise the Penobscot River Educational Partnership (PREP); four of them, including Maine Indian Education, partners in a current GK-12 project, have joined with the University of Maine to form Fellow-teacher teams to introduce K-12 students to experiments, field trips, and discussions in areas such as chemistry, climate change, marine sciences, molecular biology, geology, food sciences, and ecology. The program is: a) helping teachers and students reach the State of Maine\u27s legislatively-mandated standards for Science & Technology (the Maine Learning Results), b) strengthening Fellows\u27 communication and teaching skills, c) providing professional development for Teachers, d) enriching science for K-12 students, e) providing young male and female role models of SMET professionals to children in grades 3-11, and f) strengthening contacts between GK-12 science faculty and K-12 districts. The K-12 students are monitoring water chemistry and species diversity and abundance in cooperating federal wildlife refuges in areas near them. These shared monitoring activities link classes throughout the entire scope of the project. The spatially and temporally distributed data enables the teams to introduce interesting analyses and discussions across partner classes interacting through videoconferences. Each Fellow works intensively with two teachers in PREP and with a teacher from eastern Maine (Washington & Hancock Counties), western Maine (Madison), or southern Maine (Damariscotta, site of the University of Maine\u27s marine sciences laboratory). The power of Maine\u27s network of ATM classrooms, is being used to expand the Fellows\u27 role modeling and introduce Fellows to a variety of teaching styles. The broader impacts of the project include strengthened backgrounds in science and attendance at the Maine summer Science Camp for the cooperating teachers. The K-12 districts\u27 benefits include the enriched learning of their students and access to the equipment from microscopes to thermal cyclers that is necessary to meet the goals of the Learning Results, but which many districts lack. The University of Maine is benefiting from K-12 students who come to the University better prepared in science and is fulfilling its mission as a Land Grant/Sea Grant institution to serve both the state of Maine and the nation as a whole
Diabetes-specific genetic effects on obesity traits in American Indian populations: the Strong Heart Family Study
<p>Abstract</p> <p>Background</p> <p>Body fat mass distribution and deposition are determined by multiple environmental and genetic factors. Obesity is associated with insulin resistance, hyperinsulinemia, and type 2 diabetes. We previously identified evidence for genotype-by-diabetes interaction on obesity traits in Strong Heart Family Study (SHFS) participants. To localize these genetic effects, we conducted genome-wide linkage scans of obesity traits in individuals with and without type 2 diabetes, and in the combined sample while modeling interaction with diabetes using maximum likelihood methods (SOLAR 2.1.4).</p> <p>Methods</p> <p>SHFS recruited American Indians from Arizona, North and South Dakota, and Oklahoma. Anthropometric measures and diabetes status were obtained during a clinic visit. Marker allele frequencies were derived using maximum likelihood methods estimated from all individuals and multipoint identity by descent sharing was estimated using Loki. We used variance component linkage analysis to localize quantitative trait loci (QTLs) influencing obesity traits. We tested for evidence of additive and QTL-specific genotype-by-diabetes interactions using the regions identified in the diabetes-stratified analyses.</p> <p>Results</p> <p>Among 245 diabetic and 704 non-diabetic American Indian individuals, we detected significant additive gene-by-diabetes interaction for weight and BMI (<it>P </it>< 0.02). In analysis accounting for QTL-specific interaction (<it>P </it>< 0.001), we detected a QTL for weight on chromosome 1 at 242 cM (LOD = 3.7). This chromosome region harbors the adiponectin receptor 1 gene, which has been previously associated with obesity.</p> <p>Conclusion</p> <p>These results suggest distinct genetic effects on body mass in individuals with diabetes compared to those without diabetes, and a possible role for one or more genes on chromosome 1 in the pathogenesis of obesity.</p
A phase 1/2 open label nonrandomized clinical trial of intravenous 2-hydroxypropyl-β-cyclodextrin for acute liver disease in infants with Niemann-Pick C1
Introduction: Niemann-Pick C (NPC) is an autosomal recessive disease due to defective NPC1 or NPC2 proteins resulting in
Methods: Infants received intravenous 2HPBCD twice a week for 6 weeks, followed by monthly infusion for 6-months. Primary outcome measure was reduction of plasma (3β,5α,6β-trihydroxy-cholan-24-oyl) glycine (TCG), a bile acid generated from cholesterol sequestered in lysosome.
Results: Three participants completed this protocol. A fourth patient received intravenous 2HPBCD under an emergency investigational new drug study but later expired from her underlying condition. The three protocol patients are living and have improved liver enzymes and TCG. No patient has experienced a drug-related adverse event.
Conclusion: Intravenous 2HPBCD was tolerated in three infants with liver disease due to NPC
Dietary determinants of cadmium exposure in the Strong Heart Family Study
Urinary cadmium (Cd) concentrations in the Strong Heart Family Study (SHFS) participants are higher than in the general US population. This difference is unlikely to be related to tobacco smoking. We evaluated the association of consumption of processed meats and other dietary products with urinary Cd concentrations in the SHFS, a family-based study conducted in American Indian communities. We included 1725 participants with urine Cd concentrations (standardized to urine creatinine) and food frequency questionnaire data grouped in 24 categories, including processed meat. Median (IQR) urinary Cd concentrations were 0.42 (0.20–0.85) μg/g creatinine. The age, sex, smoking, education, center, body mass index, and total kcal adjusted geometric mean ratio (GMR) (95%CI) of urinary cadmium concentrations per IQR increase in each dietary category was 1.16 (1.04–1.29) for processed meat, 1.10 (1.00–1.21) for fries and chips, 0.87 (0.80–0.95) for dairy products, and 0.89 (0.82–0.97) for fruit juices. The results remained similar after further adjustment for the dietary categories associated with urinary Cd in the previous model except for fries and chips, which was no longer statistically significant. These findings revealed the potential importance of processed meat products as a dietary source of cadmium
Associations of maternal arsenic exposure with adult fasting glucose and insulin resistance in the Strong Heart Study and Strong Heart Family Study
Experimental and prospective epidemiologic evidence suggest that arsenic exposure has diabetogenic effects. However, little is known about how family exposure to arsenic may affect risk for type 2 diabetes (T2D)-related outcomes in adulthood. We evaluated the association of both maternal and offspring arsenic exposure with fasting glucose and incident T2D in 466 participants of the Strong Heart Family Study. Total arsenic (ΣAs) exposure was calculated as the sum of inorganic arsenic (iAs) and methylated (MMA, DMA) arsenic species in maternal and offspring baseline urine. Median maternal ΣAs at baseline (1989-91) was 7.6 µg/g creatinine, while median offspring ΣAs at baseline (2001-03) was 4.5 µg/g creatinine. Median offspring glucose in 2006-2009 was 94 mg/dL, and 79 participants developed T2D. The fully adjusted mean difference (95% CI) for offspring glucose was 4.40 (-3.46, 12.26) mg/dL per IQR increase in maternal ΣAs vs. 2.72 (-4.91 to 10.34) mg/dL per IQR increase in offspring ΣAs. The fully adjusted odds ratio (95%CI) of incident T2D was 1.35 (1.07, 1.69) for an IQR increase in maternal ΣAs and 1.15 (0.92, 1.43) for offspring ΣAs. The association of maternal ΣAs with T2D outcomes were attenuated with adjustment for offspring adiposity markers. Familial exposure to arsenic, as measured in mothers 15-20 years before offspring follow-up, is associated with increased odds of offspring T2D. More research is needed to confirm findings and better understand the importance of family exposure to arsenic in adult-onset diabetes.This study was supported by the National Institute of EnvironmentalHealth Sciences, Unites States (P42ES010349, P30ES009089,R01ES028758, R01ES025216).N.T., P.F.-L., and A.N.-A. contributed to the preparation of researchdata and writing of the manuscript. N.T, M.J.S, A.D.-R., M.T.-P., M.G.-P., and A.N.-A. contributed to the statistical analysis. B.V.H., J.M., K.N.,J.G.U., and S.C. contributed as the primary investigators of the SHS andSHFS, and to the preparation of the research data. K.A.F. and W.G.contributed to the arsenic measurements in the SHS and SHFS partici-pants. A.N.-A. is the guarantor of this work and, as such, had full accessto all the data in the study and takes responsibility for the integrity ofthe data and the accuracy of the data analysis.S
Determination of selenium in serum in the presence of gadolinium with ICP-QQQ-MS
Gadolinium (Gd)-based magnetic resonance imaging (MRI) contrasting agents interfere with the determination of selenium (Se) when analysed by single quadrupole inductively coupled plasma-mass spectrometry (ICP-MS). This paper demonstrates that an ICP-triple quadrupole-MS (ICP-QQQ-MS) with oxygen mass shift overcomes Gd++ interference on Se+ and mitigates typically encountered matrix and spectral based interferences. Normal human serum was diluted in a solution containing isopropanol, EDTA, NH4OH and Triton X-100. Samples were unspiked (control) serum; serum spiked with 0.127 μmol L−1 Se or 127 μmol L−1 Gd; and serum spiked with both 0.127 μmol L−1 Se and 127 μmol L−1 Gd. Consideration of collision/reaction gases and conditions for interference mitigation included helium (He); a ‘low’ and ‘high’ hydrogen (H2) flow, and oxygen (O2). The instrument tune for O2 was optimised for effective elimination of interferences via a mass shift reaction of Se+ to SeO+. The ICP-QQQ-MS was capable of detecting trace (>9.34 nmol L−1) levels of Se in serum in the presence of Gd in our simulated post-MRI serum sample. The multi-tune capabilities of the ICP-QQQ-MS may be adapted to eliminate other specific isobaric interferences that cause false positive results in other analyses where the analyte is confounded by doubly charged and/or polyatomic species
- …