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Abstract

Urinary cadmium (Cd) concentrations in the Strong Heart Family Study (SHFS) participants are 

higher than in the general US population. This difference is unlikely to be related to tobacco 

smoking. We evaluated the association of consumption of processed meats and other dietary 

products with urinary Cd concentrations in the SHFS, a family-based study conducted in 

American Indian communities. We included 1725 participants with urine Cd concentrations 

(standardized to urine creatinine) and food frequency questionnaire data grouped in 24 categories, 

including processed meat. Median (IQR) urinary Cd concentrations were 0.44 (0.20–0.85) μg/g 

creatinine. The age, sex, smoking, education, center, body mass index, and total kcal adjusted 

geometric mean ratio (GMR) (95%CI) of urinary cadmium concentrations per IQR increase in 

each dietary category was 1.16 (1.04–1.29) for processed meat, 1.10 (1.00–1.21) for fries and 

chips, 0.87 (0.80–0.95) for dairy products, and 0.89 (0.82–0.97) for fruit juices. The results 

remained similar after further adjustment for the dietary categories associated with urinary Cd in 

the previous model except for fries and chips, which was no longer statistically significant. These 

findings revealed the potential importance of processed meat products as a dietary source of 

cadmium.
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1. Introduction

Cadmium is a toxic metal with multiple health effects including kidney disease, bone 

fragility, cardiovascular disease and several cancers even at low exposure levels (Tellez-

Plaza et al., 2013a; Tellez-Plaza et al., 2013b; García-Esquinas et al., 2014). Cadmium half-

life in the body is extremely long (20–35 years) due to its cumulative capacity and binding 

to different proteins, especially in the kidneys and liver (Jomova and Valko, 2011). Tobacco 

is a major source of cadmium exposure in humans (Gil et al., 2011), as tobacco leaves bio-

concentrate cadmium, which is then absorbed through the lungs during smoking. In non-

smokers, the diet is the main source of cadmium (ATSDR, 2012) including root and leafy 

vegetables (e.g. potatoes, lettuce or spinach) (EFSA, 2009; Llobet et al., 2003), shellfish 

(e.g. clams or mussels) (Olmedo et al., 2013) and organ meats (e.g. liver or kidneys) 

(Jokanović et al., 2013).

The characterization and prevention of cadmium exposures are warranted, especially in 

disproportionately exposed populations. In the Strong Heart Study (SHS), a population-

based prospective cohort study conducted in American Indian communities in Arizona, 

Oklahoma and North and South Dakota, baseline urinary cadmium concentrations were 

markedly higher in the study participants compared to the general US population, even 

among never smokers (Tellez-Plaza et al., 2013b, Pang et al., 2016). These findings suggest 

there are unaccounted sources of cadmium exposure in the SHS population. Fretts et al. 

(2012) have reported a high consumption of processed meats in the SHS communities (68% 

participants consumed at least 3 servings of processed meats per week). Processed meat 

products, commonly consumed by low-income families due to its low price, could constitute 
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a relevant source of cadmium exposure as they contain heavily processed animal tissues, 

some of them potentially including organ meats. Several types of processed meats have 

historically been distributed free of charge by U.S. Department of Agriculture food 

assistance program in some Indian reservations and this distribution influences their diet 

(Smith et al., 1996; Taylor et al., 2006; Vaughan et al. 1997).

Baseline urinary cadmium concentrations, a biomarker of long-term exposure, were 

positively associated with incident cardiovascular disease in the SHS, even among non-

smokers (Tellez-Plaza et al., 2013b). The goal of this study was to assess the association of 

different foods, with a specific interest on processed meat products, with urinary cadmium 

concentrations in the Strong Heart Family Study (SHFS), a family-based extension of the 

SHS that included a detailed food frequency questionnaire and urinary cadmium measures 

during the 2001–2003 visit. Our main hypothesis was that higher frequency and amount of 

processed meat consumption is associated with higher cadmium concentrations in urine. 

Given relatively high urinary cadmium concentrations in the SHS communities and its 

associated health effects, identifying relevant sources of exposure is critical for the 

development of prevention interventions.

2. Materials and methods

2.1. Study population

The SHFS is a multigenerational cohort recruited from the SHS (North et al., 2002). 

Families were eligible if they had a core sibship consisting of 3 original SHS participants 

and at least 5 additional living family members. During the 2001–2003 baseline visit, 2474 

SHFS participants (15 years of age and older) were recruited who were free of diabetes at 

baseline and had urine metal concentrations measured as part of an ancillary study to 

evaluate gene-environment interactions for incident diabetes. We only included participants 

with dietary data available (n=2188). We excluded 1 participant with missing urinary 

creatinine, 3 participants with abnormal concentrations of creatinine-corrected urine 

cadmium (concentrations 24, 30 and 200 times higher than the 90th percentile), and 

participants with missing values of educational level (n=8), body mass index (n=7), and 

smoking status (n=1). We further excluded 443 participants from a community that has 

withdrawn their permission to conduct research in 2016, leaving a total of 1725 participants 

in this analysis (see participant flow chart in Supplemental Figure 1).

The study protocol was approved by the institutional review boards of the Indian Health 

Service, the participating institutions and the participating tribes. All participants provided 

written informed consent.

2.2. Food frequency questionnaire

An interviewer-administered Block 119-item Food Frequency Questionnaire (FFQ) was 

used to measure usual food intake as previously described (Fretts et al., 2012). Serving sizes, 

described as standard units (e.g., 1 banana, 2 eggs, etc.) or standard volume/weight portions, 

were assessed using photographs of various portions as visual aids. Each participant was 

asked how often, on average, a particular food was consumed during the past year. The 
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quantity was assessed using frequency measures of consumption (seasonally, never, a few 

times per year, once per month, 2–3 times/mo, once per week, twice per week, 2–3 

times/wk, 5–6 times/wk, daily) and adjusted for portion size (small, medium, or large). In 

addition to standard Block FFQ food items, the FFQ included foods commonly consumed 

among American Indians such as menudo, pozole, guysava, red or green chili, Indian taco, 

fry bread, corn tortilla, flour tortilla, and “spam” (a term that refers to canned meats, usually 

a combination of heavily processed beef or pork meats, salt, sodium nitrate, potato starch 

and water).

Average daily energy and macronutrient intakes were calculated for each study participant 

by using the Block database (Block Dietary Systems). To obtain measures of average daily 

energy and nutrient intake, the frequency response for each food on the FFQ and American 

Indians supplementary foods questionnaire was multiplied by the nutrient content of the 

documented portion size of the food, then summed for all foods (Block et al., 1998).

The food items in the FFQ were grouped in 24 different categories according to their 

potential cadmium content based on data on cadmium concentrations in US foods from the 

Total Diet Study Market Baskets 2006 through 2011 conducted by the US Food and Drug 

Administration (FDA, 2014). As an example, leafy vegetables, fries and chips, nuts and 

seeds, organ meat and processed meat had their own categories. For instance, the 

classification of fries and chips together and separated from boiled or baked potatoes is due 

to different levels of cadmium concentrations in these modalities of potato preparation. The 

specific food stuffs included in each category is displayed in Supplemental Table 1. For 

processed meats, for instance, our goal was to include meats made of mixed parts of the 

animal and for that reason we did not include bacon or hamburgers. Total intake for each 

food category was expressed as grams (g) consumed per day (Supplemental Figure 2).

2.3. Urine cadmium

Spot urine samples from baseline were collected in polypropylene tubes, frozen within 1 to 2 

hours of collection, shipped buried in dry ice and stored in freezers at −70°C in the Penn 

Medical Laboratory, MedStar Research Institute, Washington, DC. Strict controls on the 

sampling, transport and storage of urine were conducted to ensure study quality (Strong 

Heart Study, 1991). The analyses of cadmium and other metals were performed by 

Inductively Coupled Plasma Mass Spectrometry ICP-MS (Agilent 7700x ICP-MS, Agilent 

Technologies, Waldbronn, Germany) and urine samples have already been used to measure 

creatinine and albumin (Tellez-Plaza et al, 2013b; Scheer et al., 2012). The inter-assay and 

the intra-assay coefficients of variation for urinary cadmium concentrations were 8.7% and 

4.5%, respectively. Standard reference materials (National Institute of Standards and 

Technology, NIST 1640a and 1643e) were used to test the accuracy of the analyses. The 

limit of detection for urine cadmium was 0.015 μg/L (and the corresponding limit of 

quantification is 0.050 μg/L), but our limit of detection is estimated conservatively so we 

kept all values provided by the method above the limit of detection. A total of 87 (5.05%) 

samples were below the limit of detection and were replaced by the limit of detection 

divided by the square root of two.
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2.4. Other variables

Study visits were performed by trained and certified staff following a standard protocol (Lee 

et al., 1990). Sociodemographic (age, sex, region and education) and lifestyle information 

(smoking status) were obtained by questionnaire during the interview. Body mass index was 

calculated from measured weight (kg) divided by measured height (m2). Kcal per day were 

obtained from the FFQ based on total grams of food estimated per day. To account for urine 

dilution, urine cadmium was divided by urine creatinine (μg per g of urine creatinine). Urine 

creatinine was measured at the Laboratory of the National Institute of Diabetes and 

Digestive and Kidney Disease, Epidemiology and Clinical Research Branch (Phoenix, AZ) 

by an alkaline picrate rate method (Lee et al., 1990).

2.5. Statistical analysis

Urine cadmium corrected for urinary creatinine and intake of dietary variables were right-

skewed and log-transformed to improve normality. We described the participant 

characteristics across urine cadmium quartiles and assessed the differences between groups 

using Kruskal-Wallis tests for continuous variables and χ2 tests for categorical variables.

To assess the association between cadmium exposure and the different food categories, 

including processed meats, we estimated geometric mean ratios (GMRs) and corresponding 

95% confidence intervals (95% CI) of urinary cadmium concentrations for an interquartile 

range increase in daily intake for each food type modeled. We used generalized estimating 

equations (GEE) to account for the lack of independence among family members. We 

presented the results in two models progressively adjusted. Model 1 was initially adjusted 

for age (continuous), gender (male/female), educational level (more/less than 12 years or 

education), body mass index (continuous), smoking status (never/former/current), center 

(Arizona/Oklahoma/North and South Dakota) and total Kcal per day (continuous). Model 2 

was further adjusted for other foods showing a significant association with urinary cadmium 

concentrations in Model 1 as well as with other food categories established as potential 

sources of cadmium exposure (see Supplemental Table 2), independently of statistical 

significance. To allow for a flexible evaluation of the dose-response, we also graphically 

described the association between cadmium and the food type based on restricted quadratic 

splines with knots at 10th, 50th, and 90th percentiles of each intake distribution, with the 

10th percentile as the reference.

To evaluate the robustness of the results, we re-run the analyses with the dietary variables in 

the original scale instead as of log-transformed, with essentially identical results. We also 

run additional sensitivity analyses further adjusting for cigarette pack-years, smokeless 

tobacco products and exposure to secondhand tobacco smoke, with similar findings 

(Supplemental Table 3). We also conducted analyses stratified by sex and smoking status. 

All analyses were conducted with R software, version 3.1.2, the significance level was set at 

0.05 and all tests were two-sided.
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3. Results

Median (IQR) urinary cadmium concentrations were 0.44 (0.20–0.85) μg/g creatinine (0.31 

(0.15–0.58) for men and 0.56 (0.27–1.02) for women). Participants with higher urinary 

cadmium concentrations were more likely to be older, women, more educated, current 

smokers, consume less Kcal per day and to be from North and South Dakota (Table 1). 

Before any adjustment, the food categories positively associated with urinary cadmium 

concentrations (p<0.05) were organ meat, leafy vegetables, root vegetables, non-alcoholic 

drinks, and oil and fat; food categories negatively associated with urinary cadmium 

concentrations were dairy products and fruit juices. Medians (IQR) intake in g/day were 23 

(11–49) for processed meat, 27 (11–63) for fries and chips, 108 (38–268) for dairy products, 

and 140 (47–356) for fruit juices. Processed meat intake was weakly positively correlated 

with the intake of fries and chips (Spearman correlation coefficient of 0.20) (Supplemental 

Table 4). Dairy products and fruit juice intake were weakly positively correlated (Spearman 

correlation coefficient 0.24). Median (IQR) processed meat consumption was 20.9 (9.9, 

41.0) for never smokers and 26.9 (11.9, 55.2) for ever smokers, respectively (p-value 

<0.001).

As seen in Table 2, after adjustment for sociodemographic and other participant 

characteristics (Model 1) the GMR (95% CI) of urinary cadmium for an interquartile range 

in log-transformed g/day for each food group was 1.16 (1.04, 1.29) for processed meat 

products, 1.10 (1.00, 1.21) for fries and chips, 0.87 (0.80, 0.95) for dairy products and 0.89 

(0.82, 0.97) for fruit juices. After further adjustment for the food categories associated with 

urinary cadmium in model 1 (processed meat products, fries and chips, dairy products and 

fruit juices) and for food categories known to have higher cadmium concentrations (organ 

meat, leafy vegetables, and baked and mashed potatoes) processed meat products remained 

associated with higher urinary cadmium concentrations (GMR 1.15, 95% CI 1.03–1.28), 

while dairy products (GMR 0.88, 95% CI 0.80–0.97) and fruit juices (GMR 0.91, 95% CI 

0.83–0.99) remained associated with lower urinary cadmium concentrations (Model 2). In 

analysis stratified by sex (Table 3), the association of urinary cadmium with processed meat 

consumption was higher in males (GMR 1.31 95% CI 1.08–1.60) than in females (GMR 

1.07 95% CI 0.95–1.20) (p-value for interaction 0.05). The negative associations between 

urinary cadmium concentrations and dairy products and fruit juices was also stronger in 

males compared to females. In analyses stratified by smoking status (Table 3), the 

association between cadmium and processed meat was stronger in ever smokers (GMR 1.23 

95% CI 1.06–1.44) compared to never smokers (GMR 1.07 95% CI 0.92–1.25) although the 

interaction was not significant (p-value 0.46), while dairy products and fruit juices displayed 

similar results in ever and never smokers.

In flexible evaluations of the dose-response, processed meat intake was associated with 

increased urinary cadmium concentrations only at levels of consumption higher than 9.6 

g/day (Figure 1). Dairy products and fruit juice showed an inverse association throughout the 

range of intake, although the decrease in urinary cadmium concentrations became more 

accentuated after around 180 g/day for dairy products and 206 g/day of fruit juices. The 

associations of cadmium with processed meats, dairy products and fruit juice remained 
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similar in analyses allowing for effect modification by sex and smoking status 

(Supplemental Figure 3).

4. Discussion

The findings of this study support that the consumption of processed meat products are 

associated with higher cadmium concentrations in urine. The association was non-linear, 

being observed at a daily intake of processed meats above 9.6 g/day but not below that level. 

Other meat products evaluated (poultry, read meat, and organ meat) were not associated with 

higher urinary cadmium concentrations, supporting the specificity of the association with 

processed meat, not with other types of meat. The association was stronger among men and 

ever smokers, compared to women and never smokers, respectively, although the interaction 

by smoking status was not statistically significant. In this respect, the markedly weaker and 

non-statistically significant association among never smokers prevents this study to reach 

firm conclusions regarding the association between processed meat and cadmium exposure. 

Additional research is needed to assess whether our findings are due to confounding, maybe 

by smoking status or other sources of cadmium that could correlate with processed meat 

intake or whether high intake of this type of product contributes to cadmium exposure in the 

population. Dairy products and fruit juices, on the other hand, were associated with lower 

urinary cadmium concentrations.

Typically, organ meat (especially kidneys and liver) have been identified as the major type of 

meat products associated with cadmium exposure due to their capacity to accumulate 

cadmium (Hassan et al., 2012; López-Alonso et al., 2007). After adjustment for participant 

characteristics, we found no association between the consumption of organ meat and urinary 

cadmium concentrations. This can be explained by the relatively low consumption of organ 

meats in the study population (Table 1). Several studies have also found that despite the high 

concentration of cadmium in organ meats, their contribution to dietary cadmium is small due 

to their infrequent consumption. In Sweden, offal products provided only 4% of the total 

cadmium dietary intake in a postmenopausal women cohort (Julin et al., 2012), and in 

another Swedish study for nonsmoking participants living on farms, offal products 

contributed only 0.3% (range 0.5–3.6%) of dietary cadmium (Olsson et al., 2002).

Very few studies have evaluated the association between processed meat products or other 

types of meat and cadmium biomarkers. In Swedish adults, total meat intake, measured 

through a food frequency questionnaire, was related to blood cadmium concentrations, 

although the study did not distinguished between processed and non-processed meats 

(Bjermo et al., 2013). In children from the US, beef consumption (measured through a food 

frequency questionnaire which included hot dogs as one of the beef food items), was 

associated with blood cadmium concentrations (Davis et al., 2014). In 3 year-old children 

from Ukraine, on the other hand, eating one sausage or more per week was not associated 

with higher blood cadmium concentrations (Friedman et al., 2006). Our study constitutes 

one of the first studies specifically evaluating the potential importance of these processed 

meat products in cadmium exposure. It is unclear, however, why we observed a non-linear 

dose-response relationship or why the association was stronger in men and ever smokers. On 

one hand, this could be related to residual confounding by smoking, although our analyses 
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were robust to additional adjustment for cigarette pack-years, smokeless tobacco products, 

and secondhand smoke exposure. On the other hand, these differences could also be related 

by differences in the types of processed meats consumed, as it is possible that not all types 

of processed meats contribute to increased cadmium exposure.

Food categories that were associated with higher urinary cadmium concentrations in this 

study before adjustment for other foods included fries and chips. Several studies have 

identified potatoes and root vegetables as an important dietary contributor to cadmium 

exposure. In Sweden, a study in nonsmoking men and women living on farms estimated that 

potatoes and other roots provided 24% of the total dietary cadmium (Olsson et al., 2002), 

while a study in Swedish postmenopausal women estimated that potatoes provided 18% of 

total dietary cadmium intake (Julin et al., 2012). In the Total Diet Study by the FDA, fries 

and chips show higher concentrations of cadmium as compared to potatoes cooked with 

other cooking methods (FDA, 2014), which could be related to the lower water content of 

fries and chips. In our study, cereals such as wheat and rice, leafy vegetables, and nuts and 

seeds, foods that have been commonly reported as dietary sources of cadmium (FDA, 2014; 

Olsson et al., 2002, Tsukahara et al., 2003, Baldantoni et al., 2016), were not associated with 

increased urinary cadmium concentrations.

Dairy products and fruit juices showed an inverse association with urinary Cd 

concentrations. Drinking milk has also been identified as inversely associated with urinary 

cadmium concentrations in a study in premenopausal women aged 40–45 years from the US 

(Adams et al., 2011). A similar inverse association of urinary cadmium with dairy products 

and fruit juices has been reported in US adults in a Dietary-Wide Association Study (DWAS) 

using NHANES and USDA data (Davis et al., 2014). Milk, cheese and yogurt were 

associated with lower urinary or blood cadmium concentrations. Similarly, orange juice and 

apple juice (this one just with blood cadmium) were associated with lower blood and urinary 

cadmium concentrations (Davis et al., 2014). The reasons behind these inverse associations 

are unknown. Potentially, these products could decrease the gastro-intestinal absorption of 

cadmium. This is well known, for instance, for dairy products and lead, which is also a toxic 

divalent metal (de Almeida Lopes et al., 2015). An adequate supply of calcium can protect 

against cadmium toxicity symptoms (Peraza et al., 1998). Regarding fruit juices, one 

possible explanation could be related to increased vitamin C and the activation of the iron 

transporter which could result in increasing iron while decreasing cadmium uptake (Fox et 

al., 1980). Interestingly, vitamin C supplementation has been observed to reduce elevated 

cadmium concentrations in the kidneys and liver of pigs fed a copper-rich diet (Peraza et al., 

1998). Unfortunately in our study we have no information on ferritin levels or iron stores.

This study has several strengths. The SHFS represents a unique resource to evaluate the 

dose-response relationship between processed meat consumption and urine cadmium 

concentrations due to the wide range of levels of processed meat consumption in the study 

population. Strengths of the study include state-of-the art methods to measure cadmium in 

urine with low limits of detection and the availability of dietary information (Scheer et al., 

2012). The Block FFQ is one of the most widely used food questionnaires, showing 

reliability and validity (Block et al., 1992; Boucher et al., 2006; Caan et al., 1998; Subar et 

al., 2001). The inclusion of an ethnic foods section on the FFQ contributes considerably to 
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increase group mean nutrient estimates and can contribute to better food and energy intake 

estimates (Block et al., 2004).

A possible limitation is the lack of blood cadmium, a cadmium biomarker that has a shorter 

half-life than urine cadmium and that could be useful to evaluate together with urine 

cadmium concentrations. In the Strong Heart Family Study, however, only urine cadmium is 

available. Other limitations include the use of a single spot urine sample of cadmium 

determination as a biomarker of exposure and the lack of tobacco biomarkers. Regression-

dilution bias due to non-differential measurement error in dietary assessment may have 

resulted in an underestimation of the associations. We also lack information on other 

environmental or occupational sources of cadmium in the population. Studies of other 

Native American populations from the US, Canada and Mexico have suggested that sources 

of cadmium include nearby contaminating factories and mining (Schmitt et al., 2006; Moon 

et al., 1986), and surface dust in jewelry-making homes (Gonzales et al., 2004). Another 

activity that could be relevant for cadmium exposure in our population is small-scale-motor 

vehicle repair (Yassin and Martonik, 2004).

5. Conclusions

Increased consumption of processed meat products was associated with increased urinary 

cadmium concentrations in the SHFS participants, although the association was weaker and 

non-statistically significant among never smokers. Increased consumption of milk products 

and fruit juices, on the other hand, was associated with lower urinary cadmium 

concentrations. This study revealed the potential contribution of processed meat products to 

cadmium exposure and provides a possible explanation for the high concentrations of 

urinary cadmium in the population. Research is needed to confirm the association between 

processed meat products and cadmium biomarkers in other populations, as well as to 

evaluate the cadmium content of a diverse group of processed meat products, including those 

that are more frequently consumed in American Indian communities. Meanwhile, our 

findings support that promoting healthier dietary habits in American Indian communities, 

including the reduction of consumption of processed meats and increasing the intake of 

dairy and fruit juices, could contribute to reduce cadmium exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

- We evaluated the association of foods with urinary Cd levels in American 

Indians.

- Higher processed meat intake was associated with higher urinary Cd 

concentrations.

- Higher intake of dairy products and fruit juices was associated with lower Cd 

levels.

- Processed meat products are a potential dietary source of cadmium.
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Figure 1. Geometric mean ratio (95% confidence interval) of urine cadmium by daily intake of 
processed meat, dairy products and fruit juice
Lines represent the geometric mean ratio of urinary cadmium concentrations based on 

restricted quadratic spline models with knots at the 10th, 50th, and 90th percentiles of each 

log-transformed daily intake of each food type. Shaded areas surrounding the lines represent 

95% confidence intervals. The reference was set at the 10th percentile of each dietary 

variable distribution. Solid lines (blue shaded areas) represent the cadmium geometric mean 

ratios (95% CI’s) for each dietary variable by adjusting for age (continuous), sex (male/

female), center (Arizona/Oklahoma/North and South Dakota), educational level (<12 years/

≥12 years), smoking status (never/former/current), body mass index (continuous), and total 

kilocalories (continuous). Dotted lines (green shaded areas) represent the cadmium 

geometric mean ratios (95% CI’s) in model further adjusted for additional food type 

variables (organ meat, processed meat, leafy vegetables, root vegetables, baked and mashed 

potatoes, fries and chips, dairy products, fruit juice and alcoholic drinks). Bars represent the 

distribution of processed meat, dairy products and fruit juice intake, respectively. The 

extreme tails of the histogram were truncated because 3 participants reported processed meat 

intake > 400 grams, and 6 reported dairy products intake < 1.3 grams.
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