228 research outputs found
CONSUMER PERCEPTIONS AND ATTITUDES TOWARDS BOVINE SOMATOTROPIN
This article investigates the possible negative effects of bovine somatotropin (bST) and antibiotic use in cows on fluid-milk consumption in New York State. Based on data from a consumer survey, the potential change in milk consumption due to bST and antibiotic use is estimated. In addition, the current perceptions of consumers about bST and antibiotics are measured, and the significant socioeconomic, demographic, and attitudinal characteristics of consumers that are related to their milk-consumption response to bST are identified. Depending upon consumer awareness of bST, the results indicate that milk consumption in New York State could decrease by 5.5% to 15.6% if bST is approved. The results also suggest that antibiotic use in cows could decrease milk consumption by 1.6% to 7%, depending upon consumer awareness. A major implication is that education will likely play an important role in influencing consumers' attitudes and perceptions about both bST and antibiotics.Consumer/Household Economics, Livestock Production/Industries,
Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis1
AbstractOur objective was to develop partial least squares (PLS) models to predict fatty acid chain length and total unsaturation of milk fat directly from a mid-infrared (MIR) spectra of milk at 40°C and then determine the feasibility of using those measures as correction factors to improve the accuracy of milk fat determination. A set of 268 milks (modified milks, farm bulk tank milks, and individual cow) were analyzed for fat, true protein, and anhydrous lactose with chemical reference methods, and in addition a MIR absorption spectra was collected for each milk. Fat was extracted from another portion of each milk, the fat was saponified to produce free fatty acids, and the free fatty acids were converted to methyl esters and quantified using gas-liquid chromatography. The PLS models for predicting the average chain length (carbons per fatty acid) and unsaturation (double bonds per fatty acid) of fatty acids in the fat portion of a milk sample from a MIR milk spectra were developed and validated. The validation performance of the prediction model for chain length and unsaturation had a relative standard deviation of 0.43 and 3.3%, respectively. These measures are unique in that they are fat concentration independent characteristics of fat structure that were predicted directly with transmission MIR analysis of milk. Next, the real-time data output from the MIR spectrophotometer for fatty acid chain length and unsaturation of milk were used to correct the fat A (C=O stretch) and fat B (C–H stretch) measures to improve accuracy of fat prediction. The accuracy validation was done over a period of 5 mo with 12 sets of 10 individual farm milks that were not a part of the PLS modeling population. The correction of a traditional fat B virtual filter result (C–H stretch) for sample-to-sample variation in unsaturation reduced the Euclidean distance for predicted fat from 0.034 to 0.025. The correction of a traditional fat A virtual filter result (C=O stretch) modified with additional information on sample-to-sample variation of chain length and unsaturation gave the largest improvement (reduced Euclidean distance from 0.072 to 0.016) and the best validation accuracy (i.e., lowest Euclidean distance) of all the fat prediction methods
Economic Performance of 11 Cheddar Cheese Manufacturing Plants in Northeast and North Central Regions
A.E. Res. 87-
Composition of Ragusano Cheese During Aging
Ragusano cheese is a brine-salted pasta filata cheese. Composition changes during 12 mo of aging were determined. Historically, Ragusano cheese has been aged in caves at 14 to 16 degrees C with about 80 to 90% relative humidity. Cheeses (n = 132) included in our study of block-to-block variation were produced by 20 farmhouse cheese makers in the Hyblean plain region of the Province of Ragusa in Sicily. Mean initial cheese block weight was about 14 kg. The freshly formed blocks of cheese before brine salting contained about 45.35% moisture, 25.3% protein, and 25.4% fat, with a pH of 5.25. As result of the brining and aging process, a natural rind forms. After 12 mo of aging, the cheese contained about 33.6% moisture, 29.2% protein, 30.0% fat, and 4.4% salt with a pH of 5.54, but block-to-block variation was large. Both soluble nitrogen content and free fatty acid (FFA) content increased with age. The pH 4.6 acetate buffer and 12% TCA-soluble nitrogen as a percentage of total nitrogen were 16 and 10.7%, respectively, whereas the FFA content was about 643 mg/100 g of cheese at 180 d. Five blocks of cheese were selected at 180 d for a study of variation within block. Composition variation within block was large; the center had higher moisture and lower salt in moisture content than did the outside. Composition variation within blocks favored more proteolysis and softer texture in the center
Measuring the equations of state in a relaxed magnetohydrodynamic plasma
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data
Measuring the equations of state in a relaxed magnetohydrodynamic plasma
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data
High locomotor reactivity to novelty is associated with an increased propensity to choose saccharin over cocaine: new insights into the vulnerability to addiction.
Drug addiction is associated with a relative devaluation of natural or socially-valued reinforcers that are unable to divert addicts from seeking and consuming the drug. Before protracted drug exposure, most rats prefer natural rewards, such as saccharin, over cocaine. However, a subpopulation of animals prefer cocaine over natural rewards and are thought to be vulnerable to addiction. Specific behavioral traits have been associated with different dimensions of drug addiction. For example, anxiety predicts loss of control over drug intake whereas sensation seeking and sign-tracking are markers of a greater sensitivity to the rewarding properties of the drug. However, how these behavioral traits predict the disinterest for natural reinforcers remains unknown. In a population of rats, we identified sensation seekers (HR) on the basis of elevated novelty-induced locomotor reactivity, high anxious rats (HA) based on the propensity to avoid open arms in an elevated-plus maze and sign-trackers (ST) that are prone to approach, and interaction with, reward-associated stimuli. Rats were then tested on their preference for saccharin over cocaine in a discrete-trial choice procedure. We show that HR rats display a greater preference for saccharin over cocaine compared with ST and HA whereas the motivation for the drug was comparable between the three groups. The present data suggest that high locomotor reactivity to novelty, or sensation seeking, by predisposing to an increased choice toward non-drug rewards at early stages of drug use history, may prevent the establishment of chronic cocaine use.This work was funded by an INSERM AVENIR and Agence Nationale de la Recherche (ANR) ANR12 SAMA00201 grant to DB, the région Poitou-Charentes, an AXA research fund fellowship to ABR, and a Ministère de la Recherche et de la Technologie grant to NV. AM was supported by the Behavioural and Clinical Neuroscience Institute of Cambridge.This is the accepted manuscript of a paper published in Neuropsychopharmacology (2015) 40, 577–589; doi:10.1038/npp.2014.204; published online 17 September 2014
All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data
We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained
Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube
Along their long propagation from production to detection, neutrino states
undergo quantum interference which converts their types, or flavours.
High-energy astrophysical neutrinos, first observed by the IceCube Neutrino
Observatory, are known to propagate unperturbed over a billion light years in
vacuum. These neutrinos act as the largest quantum interferometer and are
sensitive to the smallest effects in vacuum due to new physics. Quantum gravity
(QG) aims to describe gravity in a quantum mechanical framework, unifying
matter, forces and space-time. QG effects are expected to appear at the
ultra-high-energy scale known as the Planck energy, ~giga-electronvolts (GeV). Such a high-energy universe would have
existed only right after the Big Bang and it is inaccessible by human
technologies. On the other hand, it is speculated that the effects of QG may
exist in our low-energy vacuum, but are suppressed by the Planck energy as
(~GeV), (~GeV), or its higher powers. The coupling of particles to these
effects is too small to measure in kinematic observables, but the phase shift
of neutrino waves could cause observable flavour conversions. Here, we report
the first result of neutrino interferometry~\cite{Aartsen:2017ibm} using
astrophysical neutrino flavours to search for new space-time structure. We did
not find any evidence of anomalous flavour conversion in IceCube astrophysical
neutrino flavour data. We place the most stringent limits of any known
technologies, down to ~GeV, on the dimension-six operators
that parameterize the space-time defects for preferred astrophysical production
scenarios. For the first time, we unambiguously reach the signal region of
quantum-gravity-motivated physics.Comment: The main text is 7 pages with 3 figures and 1 table. The Appendix
includes 5 pages with 3 figure
- …