1,406 research outputs found

    Shuttle antenna radome technology test program. Volume 2: Development of S-band antenna interface design

    Get PDF
    The effects of the Thermal Protection Subsystem (TPS) contamination on the space shuttle orbiter S band quad antenna due to multiple mission buildup are discussed. A test fixture was designed, fabricated and exposed to ten cycles of simulated ground and flight environments. Radiation pattern and impedance tests were performed to measure the effects of the contaminates. The degradation in antenna performance was attributed to the silicone waterproofing in the TPS tiles rather than exposure to the contaminating sources used in the test program. Validation of the accuracy of an analytical thermal model is discussed. Thermal vacuum tests with a test fixture and a representative S band quad antenna were conducted to evaluate the predictions of the analytical thermal model for two orbital heating conditions and entry from each orbit. The results show that the accuracy of predicting the test fixture thermal responses is largely dependent on the ability to define the boundary and ambient conditions. When the test conditions were accurately included in the analytical model, the predictions were in excellent agreement with measurements

    Erythropoietin stimulates proliferation of human renal carcinoma cells

    Get PDF
    Erythropoietin stimulates proliferation of human renal carcinoma cells.BackgroundWe reported recently that normal human, rat, and mouse tubular cells express authentic erythropoietin-receptors (EPO-R) through which EPO stimulates mitogenesis. The present study examines whether EPO could elicit such a proliferative and thereby potentially detrimental response in cells of human renal-cell carcinoma (RCC).MethodsNephrectomy samples were screened from patients with RCC (one chromophilic, two clear cell) as well as cell lines of human (Caki-2, 786-0) and mouse (RAG) renal adenocarcinomas for expression of EPO-R transcripts and protein. Cells were further tested for specific 125I-EPO binding and mitogenic response to EPO.ResultsAuthentic EPO-R transcripts and protein (approximately 72 kD) were detected in renal tumors and cell lines. Tumors showed low-level EPO expression, while cell lines did not. In cells, specific 125I-EPO binding to a single class of EPO-R (apparent Kd 1.3 to 1.4 nmol/L, Bmax 2.2 to 2.6 fmol/mg protein) was observed. EPO stimulated cell proliferation dose dependently, and the individual mitogenic effects of either EPO or 10% newborn calf serum were markedly amplified when both were coadministered.ConclusionThese data are the first to demonstrate, to our knowledge, that human RCCs express EPO-R message and protein and that receptor activation stimulates their proliferation in vitro. If these mitogenic effects of EPO are also operative in patients with RCC, endogenous EPO or its administration for the treatment of anemia could potentially hasten proliferation of renocellular malignancies

    Can \u3cem\u3eDarapsa myron\u3c/em\u3e (Lepidoptera: Sphingidae) Successfully Use the Invasive Plant \u3cem\u3eAmpelopsis brevipedunculata\u3c/em\u3e as a Food Resource?

    Get PDF
    Although biological invasions are generally thought to negatively impact native fauna, native herbivores that can utilize invasive plants may benefit. The East Coast of the United States has been invaded by the vitaceous plant Ampelopsis brevipedunculata. The invaded range of A. brevipedunculata overlaps with that of the native Vitis labrusca, a closely-related species that is a host plant for the native moth Darapsa myron (Lepidoptera: Sphingidae). We reared D. myron larvae on either V. labrusca or A. brevipedunculata to assess whether development and survival differed on the two plant species. Larval growth and survival to pupation was only 5% on A. brevipedunculata compared to 30% on V. labrusca, suggesting that the invasive species is an unsuitable hostplant for D. myron

    B821: Comparative Health Characteristics of Adolescent and Older Mothers and their Offspring in Maine

    Get PDF
    The purpose of this study was to analyze the incidence of births in Maine from 1980 to 1984 and to profile the health and demographic characteristics of this populationhttps://digitalcommons.library.umaine.edu/aes_bulletin/1053/thumbnail.jp

    Human, rat, and mouse kidney cells express functional erythropoietin receptors

    Get PDF
    Cells of human, rat, and mouse kidney express functional erythropoietin receptors.BackgroundErythropoietin (EPO), secreted by fibroblast-like cells in the renal interstitium, controls erythropoiesis by regulating the survival, proliferation, and differentiation of erythroid progenitor cells. We examined whether renal cells that are exposed to EPO express EPO receptors (EPO-R) through which analogous cytokine responses might be elicited.MethodsNormal human and rat kidney tissue and defined cell lines of human, rat, and mouse kidney were screened, using reverse transcription-polymerase chain reaction, nucleotide sequencing, ligand binding, and Western blotting, for the expression of EPO-R. EPO's effects on DNA synthesis and cell proliferation were also examined.ResultsEPO-R transcripts were readily detected in cortex, medulla, and papilla of human and rat kidney, in mesangial (human, rat), proximal tubular (human, mouse), and medullary collecting duct cells (human). Nucleotide sequences of EPO-R cDNAs from renal cells were identical to those of erythroid precursor cells. Specific 125I-EPO binding revealed a single class of high- to intermediate-affinity EPO-Rs in each tested cell line (kD 96 pM to 1.4 nM; Bmax 0.3 to 7.0 fmol/mg protein). Western blots of murine proximal tubular cell membranes revealed an EPO-R protein of approximately 68 kDa. EPO stimulated DNA synthesis and cell proliferation dose dependently.ConclusionThis is the first direct demonstration, to our knowledge, that renal cells possess EPO-Rs through which EPO stimulates mitogenesis. This suggests currently unrecognized cytokine functions for EPO in the kidney, which may prove beneficial in the repair of an injured kidney while being potentially detrimental in renal malignancies

    A study of leeside flow field heat transfer on Shuttle Orbiter configuration

    Get PDF
    A coupled inviscid and viscous theoretical solution of the flow about the entire configuration is the desirable and comprehensive approach to defining thermal environments about the space shuttle orbiter. Simplified methods for predicting entry heating on leeside surfaces of the orbiter are considered. Wind tunnel heat transfer and oil flow data at Mach 6 and 10 and Reynolds numbers ranging from 500,000 to 73 million were used to develop correlations for the wing upper surface and the top surface of the fuselage. These correlations were extrapolated to flight Reynolds number and compared with heating data obtained during the shuttle STS-2 reentry. Efforts directed toward the wing leeside surface resulted in an approach which generally agreed with the flight data. Heating predictions for the upper fuselage were less successful due to the extreme complexity of local flow interactions and the associated heating environment

    A Time-Orbiting Potential Trap for Bose-Einstein Condensate Interferometry

    Full text link
    We describe a novel atom trap for Bose-Einstein condensates of 87Rb to be used in atom interferometry experiments. The trap is based on a time-orbiting potential waveguide. It supports the atoms against gravity while providing weak confinement to minimize interaction effects. We observe harmonic oscillation frequencies omega_x, omega_y, omega_z as low as 2 pi times (6.0,1.2,3.3) Hz. Up to 2 times 10^4 condensate atoms have been loaded into the trap, at estimated temperatures as low as 850 pK. We anticipate that interferometer measurement times of 1 s or more should be achievable in this device.Comment: 9 pages, 3 figure

    Concentrated solar thermoelectric generators

    Get PDF
    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. In this paper, we develop a novel detailed balance model for STEGs and apply this model to both state-of-the-art and idealized materials. This model uses thermoelectric compatibility theory to provide analytic solutions to device efficiency in idealized materials with temperature-dependent properties. The results of this modeling allow us to predict maximum theoretical STEG efficiencies and suggest general design rules for STEGs. With today's materials, a STEG with an incident flux of 100 kW m^(−2) and a hot side temperature of 1000 °C could achieve 15.9% generator efficiency, making STEGs competitive with concentrated solar power plants. Future developments will depend on materials that can provide higher operating temperatures or higher material efficiency. For example, a STEG with zT = 2 at 1500 °C would have an efficiency of 30.6%
    • …
    corecore