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ABSTRACT

The effects of TPS contamination on the Space Shuttle Orbiter S-band Quad

antenna due to multiple mission buildup are discussed. A test fixture was de-

signed, fabricated and exposed to ten cycles of simulated ground and flight

environments. Radiation pattern and impedance tests were performed to measure

the effects of these contaminates. The degradation in antenna performance was

attributed to the silicone waterproofing in the TPS tiles rather than exposure

to the contaminating sources used in the test program.

Validation of the accuracy of an analytical thermal model developed in the

first part of this contract is discussed. Thermal vacuum tests with a test fix-

ture (also designed and fabricated in the first part of this contract) and a

representative S-band Quad antenna were conducted to evaluate the predictions of

the analytical thermal model for two orbital heating conditions and entry from

each orbit. The results show that the accuracy of predicing the test fixture

thermal responses is largely dependent on the ability to define the boundary and

ambient conditions. When the test conditions were accurately included in the

analytical model, the predictions were in excellent agreement with measurements.
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SUMMARY

The design, fabrication and testing of a test fixture used to assess TPS

contamination and antenna performance are discussed. The test fixture design

was based on the TPS and thermal-structure requirements for the lower Space

Shuttle S-band Quad antenna. The test fixture was sized to permit testing in

either a 2x2 ft channel nozzle plasma facility or a radiant heat facility. The

TPS surface of the test fixture was subjected to select ground environments

(dust, salt fog and humidity) followed by simulated flight environments (ascent,

orbit and entry heating, and solar UV) in a radiant heat facility. The effects

of the simulated environments were then measured by comparing the post test

radiation patterns and impedance of an S-band antenna mounted in the test fix-

ture with pretest data. Ten test cycles were performed. The test results

indicate that the effects of the test environments do not cause any significant

degradation in the electrical performance of the TPS. At 1.8 and 2.3 GHz the

gain either stayed essentially unchanged or was increased slightly. However, at

2.1 GHz the gain in two planes (_ = 45 ° and 90 °) was reduced i dB consistently.
Since the gain reduction was observed after the first thermal test and before

the first exposure to the ground environment, it is attributed to burning of the

silicone resin used for waterproofing the TPS tiles rather than the contaminants

added during testing. The impedance changes over the entire frequency range

(1.7 to 2.4 GHz) were, in general, insignificant.

Thermal analyses and the tests to validate an analytical thermal model are

discussed. The analyses results using the analytical thermal model developed

in the first part of the contract were updated to include revised ascent and

heating rate histories and TPS thicknesses. The updated results were then used

as the basis for specifying test parameters for two thermal tests using the test

fixture which was designed and fabricated during the first part of the contract.

The test results initially showed antenna and structural temperatures to be

17 to 22 K (30 to 40=F) lower than predicted. Revised boundary conditions, based

on measured data, which bring the predicted results into good agreement with
test results are discussed.
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CONCLUSIONS

are :
The conclusions reached from the test results obtained during this program

i. Multiple Mission Antenna Performance Assessment

a. The thermal test fixture designed and fabricated for assessment

of multiple mission TPS contamination provided a good representa-

tion of the Shuttle Orbiter S-band Quad antenna installation.

b. The contamination from the simulated Shuttle ground and flight

environments did not result in significant degradation in the

electrical performance of the Shuttle TPS for the ten mission

cycles considered. However, the tests showed that a surface

deposit does build up. Therefore, the negative finding does not

preclude measurable degradation after more mission cycles.

C. The test results indicate that burning of the silicone waterproof-

ing material in the TPS tiles during the first flight (thermal)

environment exposure resulted in about I dB gain reduction at 2.1

GHz. Since the gain reduction occurred at only one of the three

test frequencies, some degree of frequency dependence is implied.

2. Thermal Vacuum Testing

me The agreement between predicted and measured results is excellent

when the analytical thermal model is an accurate representation

of the test fixture and environment. Therefore, the analytical

thermal methods used are considered valid for making accurate

flight predictions.

b.
Backside convective heat transfer should be included in the analyti-
cal model when the pressure is near ambient and the test model is

not sealed. (Note: This is not only applicable to test models

but should also be applicable to flight analysis.)

C.
A thermal test fixture should be designed to minimize support or

side structure affects and/or instrumented to identify boundary

conditions which deviate from the ideal adiabatic boundary condi-

tion. This would permit the modification of the input parameters

so that the flight responses could be more closely obtained at
critical points in the test fixture.

d. It is difficult to accurately model sections of flight hardware

because of the edge effects which occur when the surrounding

thermal-structure is not present.

e. Equipment thermal models should allow for transverse gradients in

substrate backup materials.

2-]
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f, Future antenna models may be simplified in terms of how the antenna is

represented, i.e., if small differences in temperature are anticipated,

fewer nodes should be used.

2-2
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RECOMMENDATIONS

The work during this program leads to the following recommendations for
future consideration:

me Tests should be run at higher frequencies (e.g., C-band and/or Ku-band)

where the effects of entry heating on the Shuttle TPS waterproofing

silicone could be expected to be more severe than at S-band frequencies.

Do In future thermal vacuum tests, the test fixture should be instrumented

to permit evaluation of the test environment and subsequent modification

of test input parameters to achieve thermal responses at critical test

points consistent with predicted flight responses.

C. A thermal test fixture should be designed to minimize support or side

structure effects and/or instrumented to identify boundary conditions

which deviate from the assumed boundary conditions. This would permit

modification of the input parameters so that the flight responses could

be more closely obtained at critical points in the test fixture.

3-]
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INTRODUCTION

The objectives of this program were: (i) to assess the effects of TPS

(thermal protection system) contamination on the Space Shuttle Orbiter S-band

Quad antenna performance, and (2) to validate the accuracy of the analytical

thermal model developed in the first part of this contract for use in support of

the S-band Quad antenna design.

The first task consisted of: (i) designing a test fixture based on actual

Shuttle TPS materials and support structure representative of the thermal mass

of the Shuttle structure and antenna mounting hardware, (2) preparing engineer-

ing drawings of the test fixture for use in fabricating it at NASA-JSC, (3) pre-

paring a test plan for a series of i0 test cycles involving simulation of selected

ground and flight environments and antenna performance measurements, (4) moni-

toring preparation and testing as required to verify that inputs and outputs were

consistent with task objectives, and (5) analyzing and evaluating results rela-

tive to the test objectives.

The second task consisted of: (1) incorporating the latest Shuttle design

data into the thermal analysis program (developed in the first part of this con-

tract) and updating the analysis output to provide data for thermal vacuum test

control parameters and comparison with test results, (2) preparing a test plan

for two tests involving simulation of flight thermal/pressure environments using

the test fixture which was designed and fabricated during the first part of this

contract, (3) monitoring preparation and testing as required to verify that

inputs and outputs were consistent with task objectives, and (4) analyzing data

and evaluating results relative to test objectives.

A test fixture for the first task, based on actual Shuttle TPS and thermally

representative structure and antenna mounting hardware, was designed and detailed

engineering drawings prepared and delivered. The test fixture was sized to per-

mit testing in either a 2x2 ft channel nozzle plasma facility or a radiant heat

facility, although testing was performed in the latter.

A test plan for the first task, multiple mission antenna performance assess-

ment (MMAPA), was prepared and delivered. It provided the requirements for NASA-

JSC preparation by specifying test parameters, general procedures, and data

acquisition requirements. The plan was based on subjecting the test fixture to

simulated Shuttle environments which could reasonably be suspect as a cause of

contamination permanently attached to the TPS surface which, in turn, could de-

grade the performance of the antenna beneath the TPS. Testing included simula-

tion of ground environments (dust, salt fog and humidity), simulation of flight

environments (ascent, orbit and entry heating, and solar UV), and electrical

measurements (radiation patterns and impedance) to measure the effects of expos-
ure to these environments.

Ten test cycles were performed to obtain the effects of multiple mission

buildup because the contamination occurring over a single mission cycle was not

expected to be particularly significant. The radiation pattern and impedance

data from each test were compared with the reference data to obtain a measure of
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the electrical performance changes of the TPS.

The thermal analysis program, developed during the first part of this con-

tract, was modified for current TPS thickness and rerun with the latest Shuttle

heating/pressure data applicable to the lower S-band Quad antenna location. The

revised calculations included temperature histories of the TPS surface and inner

and outer bondline, structural skin and antenna. These results were used as the

test inputs of both the MMAPA tests, to evaluate TPS contamination effects, and

the thermal vacuum tests to validate the analytical thermal model of the antenna

installation.

A test plan for the second task, thermal vacuum testing, was also prepared

and delivered. It provided the requirements for NASA-JSC preparation by specify-

ing test parameters, general procedures, and data acquisition requirements.

Testing consisted of simulating the effects of the Shuttle flight thermal/pres-

sure environments (orbit and entry) and measuring the resulting structural and

antenna temperatures. For this test, the major input consists of heating a thin

stainless steel sheet at the outer TPS bondline to simulate two flight environ-

ments. The measured response temperatures were then compared with those pre-

dicted by the analytical thermal model to evaluate the accuracy of the predic-
tions.

Mr. E. A. Kuhlman, Program Manager, was responsible for the overall techni-

cal direction of this program. Other members of the McDonnell Douglas Astro-

nautics Company-EAST (MDAC-EAST) engineering staff who contributed to this pro-

gram were L. C. Baranowski, J. L. Conlee, D. A. Hartbauer and H. W. Kipp. Mr.

Baranowski performed the analytical thermal analyses, coordinated test prepara-

tion and testing, and analyzed the thermal test data.

Mr. H. D. Cubley of the Antenna System Section of the Electromagnetic Sys-

tems Branch, NASA Lyndon B. Johnson Space Center, Houston, Texas was the techni-

cal monitor for this program.

The units used for the physical quantities defined in the text of this

report are given in both the International System of Units (SI) and the U.S.

customary units in the text. U.S. customary units are used in the drawings,

graphs and tables.

This report is designated as Volume II in anticipation of additional work

related to the work reported in Volume I.

The task numbers used in the text correspond to the tasks given in the

Statement of Work, Exhibit "A", of Contract NAS 9-14772, Modification No. S/A-2,

dated i July 1976.
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MULTIPLE MISSION ANTENNA PERFORMANCE ASSESSMENT

The objective of this task (Task 2.3.1) was to determine the effects of TPS

contamination on the performance of the S-band Quad antennas located on the lower

surface of the Space Shuttle Orbiter. The TPS covers these antenna apertures and

serves as a radome in addition to providing thermal protection from ascent and

entry heating. Therefore, the build up of contamination on the surface of the

TPS over a number of Shuttle flights could affect the antenna pattern (e.g., shape,

gain and axial ratio, etc.) and impedance.

The environments, which are considered potential sources for TPS contamina-

tion, are certain ground environments (i.e., dust, salt fog and humidity) which

can contribute to a deposit on the TPS tile surfaces and which, in turn, could be

converted to a permanent deposit by one or more of the flight environments (i.e.,

ascent, orbital and entry heating, and solar ultra violet (UV) light). RCS

exhaust deposits during orbit were also considered. A preliminary study (by

MDAC-WEST under contract to Rockwell) indicated that a film of monomethyl hydra-

zine (MMH) nitrate and water, one micron thick, could be expected. However, even

though evaporation can be significantly slower by solar UV, complete evaporation

of the RCS exhaust film should occur in the early Dart of entry when the temper-

ature range is in the 422 to 574 K (300 to 570°F) range. Therefore, an RCS

exhaust film was eliminated as a TPS contamination candidate for this program.

To accomplish the above objective, a test fixture representative of the

Shuttle thermal-structure and TPS at the S-band Quad antenna location was designed,

fabricated, and subjected to simulated ground and space flight environments. The

electrical performance of the TPS was obtained by measuring the radiation pattern

and impedance of an S-band antenna mounted in the test fixture. Figure 1 shows a

block diagram of the testing sequence. This sequence was repeated ten times to

simulate the build up of the contamination from multiple Shuttle flights. It

should be noted that the ground environments test was omitted prior to the first

flight environments test. The results of each of the ten electrical tests were

then compared with pretest reference data to assess the effects of the contamin-

ation.

This section describes the test fixture, the test facilities and configura-

tion of the various environmental simulations, the electrical performance measure-

ments, and discusses the test results.

Test Fixture

The Multiple Mission Antenna Performance Assessment (MMAPA) test fixture

was designed to represent a section of Space Shuttle Orbiter TPS, skin-stringer

structure, and mounting assembly for the S-band Quad antenna. The test fixture

was designed for testing at NASA-JSC in either a plasma or a radiant heating

facility. Preliminary studies of the test fixture requirements indicated that

the flexibility of testing in either heating facility could be achieved without

significant additional design effort or cost penalty. Since the plasma facility
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requirements (e.g., size, differential pressure, etc.) were the most limiting

factor, they served as the primary design guidelines in the test fixture design

effort. A detailed drawing (SK1472201) of the test fixture design with dimen-

sions, materials, and process specification was prepared and delivered to NASA-

JSC for fabrication.

Design. - A sketch of the MMAPA test fixture is shown in figure 2. The

design was based on the requirements for testing in the 2x2 feet channel nozzle

fixture of the NASA-JSC l0 MW ARMSEF plasma facility. However, the same test

fixture design can be used for testing in a radiant heat facility equally well.

The test fixture has a TPS surface 45.7 x 45.7 cm (18.0 x 18.0 in.). This is

adequate to mount an S-band antenna with a flange diameter of 31.750 cm (12.500

in.). Testing in a radiant heat facility requires only that guard insulation be

placed appropriately around the sides of the test fixture and adjacent to the

TPS. Testing in the ARMSEF facility requires an adapter assembly (figure 3)

which would be attached to a standard test panel holder assembly (NASA-JSC draw-

ing SED 36112527). The adapter assembly includes the necessary guard insulation

around the test fixture. The design of the adapter assembly allows it to stay

attached to the channel nozzle while the MMAPA test fixture can be removed for

electrical testing and ground environment exposure. The MMAPA test fixture

consists of three primary components: TPS, simulated structure, and antenna

mounting assembly.
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23.23

DIIIENSIONS IN INCHES

FIGURE 3

23.23

TEST

FIXTURE

GUARD TILES J

L

/___CHANNEL NOZZLE TEST PANEL

SUPPORT NASA DWG. SED 36112527

ARMSEF FACILITY ADAPTER

TPS: In the area of the lower S-band Quad antennas, the Shuttle TPS (figure

4) consists of HRSI (High Temperature Reusable Surface Insulation), SIP (Strain

Isolator Pad) and a bonding adhesive. The HRSI is bonded to the SIP and the SIP

to the skin with RTV-560. The thickness of the HRSI is dependent upon the local

heat input. The HRSI is not continuous but is cut into tiles nominally 15.2 x

15.2 cm (6.0 x 6.0 in.). The tile rows are normally offset 7.6 cm (3.0 in.) in

a transverse direction to eliminate long longitudinal gaps and, thus, minimize

heating due to plasma gas flow in the gaps. The gap width between tiles is 1.27

+ 0.51 mm (0.050 + 0.020 in.).
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RTV 560 BOND
.0075 IN. THICK

PER BONDLINE

RSI - THICKNESS

_VARIES WITH LOCATION

__SIP - .165 THICK

_STRUCTURAL SKIN

.063 NOMINAL THICKNESS

STRINGER HEAD

FIGURE 4 TYPICAL TPS/STRUCTURE CONFIGURATION

The HRSI tiles for the MMAPA test fixture are LI-900 insulation with a RCG

(reaction cured glass) surface coating. The tiles were fabricated to the

Shuttle specification in effect at the time of the order. Nominal tile sizes

were used except in the corners where 7.6 x 15.2 cm (3.0 x 6.0 in.) tiles were

used to accommodate the offset tile pattern (figure 2). The tile thickness

selected for the test fixture was 4.572 cm (1.800 in.), the numerical average of

tile thickness (table I) over the S-band Quad antenna taken at 5.08 cm (2.00 in.)

intervals. The average tile thickness determined by numerical integration and

the tile thickness profile over the antenna aperture was 0.178 mm (0.007 in.)

less, which is well within the tile fabrication tolerance (+0.000/-0.025 in.)

specified for the purchased tiles. The tile thickness data was supplied by

Rockwell and was current as of 22 July 1976.

TABLE I

TOTAL TPS THICKNESS

OVER S-BAND QUAD ANTENNA

x0 = 556

Yo T(IN.)

88 l.7316

90 ].7710

92 ].8205

94 l.8818

96 1.9579

g8 2.05]8

lO0 2.1675

102 2.3099
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The SIP is a layer of needle felted nomex 4.191 mm (0.165 in.) thick. The

SIP configuration (figure 2) consists of individual pads under each tile and

filler bar strips under the tile gaps. Nominally the SIP pads are 12.70 x 12.70

cm (5.00 x 5.00 in.) or 2.54 cm (I.00 in.) less than the tile dimension. The

pads are bonded to the HRSI tile first and then the tile-SIP assembly is bonded

to the structural skin. The outer surface of the filler bar is coated with RTV-

560, 0.254 mm (0.010 in.) thick. This results in a rubber coating on the filler

bar which serves as a waterproofing seal at the gaps between the tiles. The

filler bars are bonded in place before the tile-SIP assemblies are bonded to the

skin.

Structure simulation: The test fixture was designed to simulate the thermal

mass of the shuttle structure in the region of the lower S-band Quad antenna.

The skin-stringer structure was modeled with a simple flat plate because only

the thermal mass was considered important to create the proper thermal environ-

ment for the TPS. This approach also simplified fabrication of the test fixture.

The structure simulation was based on Rockwell drawings (Nos. V070-320124 and

V070-320127) which give the details of the applicable structure and antenna

mounting assembly details. After the test fixture design was completed and

fabrication started, new drawings (Nos. V070-320780 and V070-742530) were received

which show the antenna mounting fixture design has been revised. However, cur-

sory review of the changes did not indicate any significant impact.

Antenna mounting assembly: The antenna mounting assembly (figure 2) was

designed to permit removal of the antenna from the backside of the test fixture.

This approach was necessary in order to avoid exposure of the antenna to the

test environments since its performance served as a test reference. Normally

the antenna would be mounted from the front (external) side and covered with

TPS, thus, supporting the TPS in the same manner as the adjacent skin. To

accomplish this change in mounting approach, a thin layer of laminant is inserted

over the antenna aperture opening to provide a bonding surface for the TPS. A

polyamide quartz cloth laminate 0.813 mm (0.032 in.) thick was used because of

its superior electrical characteristics compared to other fiberglass type mate-

rials. The test fixture skin/structure panel (figure 2, cross-section A-A) was

milled out to make the laminate flush with the adjacent panel surface in order

to provide a smooth bonding surface for the TPS. The antenna is held in place

with a circular ring which contains the necessary fasteners for the antenna.

This permitted the antenna to be easily removed and replaced with a dummy antenna

(i.e., a circular metal plate) during the various environmental tests.

Fabrication. - The MMAPA test fixture panel and associated hardware were

fabricated by the NASA-JSC Technical Services machine shop. There were no

significant deviations from the drawing supplied by MDAC. The TPS tiles were

purchased from Lockheed to the Shuttle specification in effect at the time of the

order. The tiles and the SIP were bonded to the test fixture panel by Rockwell

representatives using current Shuttle bonding procedures. Figure 5 shows the

completed test fixture. Figure 5(a) shows the TPS surface and figure 5(b) shows

the test fixture backside with thermocouples attached.
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(a) TOP VIEW

FIGURE 5

(b) BOTTOM VIEW

PHOTO OF MMAPA TEST FIXTURE
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Instrumentation. - The MMAPA test fixture instrumentation consisted of ten

thermocouples on the backside of the test fixture. The thermocouple locations

are shown in figure 6. The primary purpose of these thermocouples (Type K,

Chromel/Alumel) is to verify that the TPS bondline temperature limits were not

exceeded. Thermocouples extending to the TPS surface were not used because of

their effects on the antenna radiation patterns and/or impedance (ref. 2) during

the antenna performance testing.

SKIN/STRUCTURE
F D_ ANTENNA

ANTENNAMOUNTING
ASSEMBLY

HRSI TILES

10 PLACES

DIMENSIONS IN INCHES

LES

FIGURE 6 THERMOCOUPLE LOCATIONS

Thermal Environment Simulation

Each thermal test sequence (figure i) simulated the Shuttle flight thermal

environments consisting of ascent, orbital (abbreviated) and entry heating and

pressures. The ascent and entry heating were simulated by a radiant heater. The

orbital temperatures were obtained with a solar UV source for the hot orbit (i.e.,

where the TPS over the antenna is continuously illuminated by the sun) tests and

a cold plate for the cold orbit (i.e., where solar illumination is absent) tests.

The solar UV source also provided a polymerization source for any volatile de-

posits on the TPS tile surface. This could significantly reduce the evaporation

rate of these deposits, thereby holding them on the TPS surface for possible

carbonization during entry heating. (Note: this can be a significant problem
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for optical coating systems.) The thermal environment simulation was performed

in a continuous sequence inside a vacuum chamber because of the TPS insulation

conductivity dependence on pressure. The heat flux and pressure histories used

for the ascent and entry environments were obtained from Rockwell through the

NASA-JSC Thermal Technology Branch. Resulting surface temperature histories were

calculated using these environments in the thermal model described in reference

1 with an updated TPS thickness.

The environments simulated were those applicable tc Space Shuttle in the

area of the lower S-band Quad antennas located at X0 = 556, YO = +95.62, and

Z0 = 294.65.

Facility description. - The MMAPA thermal tests were conducted in the NASA-

JSC radiant heat facility located in Building 13. This facility (figure 7) con-

sists of a graphite heater and control, a vacuum chamber and a data acquisition

system (not shown). Additional equipment used for the MMAPA tests included a

solar UV source and a cold plate.

FIGURE 7 NASA-JSC RADIANT HEAT TEST FACILITY
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The graphite heater assembly (figure 7) is a controllable radiant heat

source capable of attaining maximum temperatures of 1644 K (2500°F) on the sur-

face of a test specimen. The heater can be controlled to the desired temperature

manually or automatically by a Data Trak system within +2%. The heater consists

of an array of graphite elements, operated in a nitrogen purged enclosure, which

heat a susceptor plate. The susceptor plate, a sheet of refractory metal, forms

part of the enclosure and provides a test area of approximately 61 x 61 cm (24

x 24 in.). The heater assembly is suspended from an overhead rail assembly and

can be moved to an alternate position manually. The range of movement permits

testing at two positions.

The vacuum chamber is a boilerplate pressure vessel from the Apollo program.

The pressure can be controlled manually or automatically by a Data Trak system

from sea level (ambient) to 93.3 Pa (0.7 torr). Pressure is measured by baratron

or standard pressure transducer systems.

The data acquisition system consisted of a magnetic tape recorder with 50

channels capacity at a minimum speed of I00 samples/second/channel and 16 chan-

nels of real time strip chart plots. The magnetic tape can be processed after

the test to provide tabulated data and/or data plots in the desired engineering
units.

The solar UV source consists of a 4 kW xenon lamp. The lamp output (beam)

entered the vacuum chamber through a quartz window in the access door (figure 7).

It was deflected to the test specimen by a front face mirror attached to the

heater assembly. The one-solar-constant spot size was limited to an area 19.1 x

19.1 cm (7.5 x 7.5 in.). The small spot size necessitated moving the illuminated

region periodically to obtain illumination of the entire TPS surface area. The

illuminated area was changed by moving the mirror and/or the lamp position.

The cold plate consisted of a nitrogen cooled plate. This plate was attached

to the side of the heater assembly and, thus, was moved over the test specimen by

the beater transport mechanism.

Test confi6uration. - The test configuration for the thermal test sequence

is shown in figure 8. The MMAPA test fixture (figure 8(a)) was both surrounded

and supported in place by guard insulation (LI-900 blocks and Fiberfrax) to

minimize side heating and protect the test fixture edges. Two small TPS HRSI

blocks with surface thermocouples were used to monitor the surface temperature

since thermocouples were excluded from the test fixture TPS surface. Figure 8(b)

shows the test setup with the test fixture removed. The test fixture support,

backside cooling plate and thermocouple leads can be seen. The respective thermo-

couple locations on the test fixture are shown in figure 6. The cooling plate

was held at about 294 K (700F), nominal tap water temperature, to provide a radi-

ation heat sink which would prevent the TPS hondline temperature from exceeding

design limits.
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•........ : _ SURFACE THERMOCOUPLES ,, .......

(a) WITH TEST FIXTURE IN PLACE

(b) WITH TEST FIXTURE REMOVED

FIGURE 8 THERMAL TEST CONFIGURATION
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The position of the test setup in the vacuum chamber permitted the heater

to be moved from over the test specimen surface and replaced by a mirror for a

solar UV environment or a cold plate for a dark space environment without open-
ing the vacuum chamber.

Several of the test fixture TPS tile gaps exceeded the nominal limits.

Therefore, to avoid excessive heating at the bottom of the gaps, the oversize

gaps were filled with LI-900 fluff insulation equal to about 1/3 of the tile
thickness.

Test environments. - Two thermal test environment sequences were used for

the MMAPA tests. One included simulation of ascent, hot orbital flight, and

entry from a hot orbit. The other included simulation of ascent, cold orbital

flight and subsequent entry.

Ascent: The ascent TPS surface temperature history is shown in figure 9.

The local static pressure is shown in figure i0. The lowest pressure for the

MMAPA tests was limited to about 93.3 Pa (0.7 torr) because of the test facility
vacuum chamber limitations.

700-

T O " 70 OF

600

500

400

200'

lOO

0 200 400 600 800
ASCENTTIME (SEC)

FIGURE 9 ASCENT TPS SURFACE TEMPERATURE HISTORY

ORBIT

1000
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Orbital: The orbital TPS surface temperature history for both hot and cold

orbital environments is shown in figure Ii. The hot orbit was simulated for the

first five tests and the cold orbit for the last five tests, with the option of

continuing the hot orbit simulation if a significant trend of degradation in the

electrical performance of the antenna was detected in the first five tests. The

orbital test time was also limited to permit completion of a complete thermal

test cycle within a 58 ksec (16 hr) period (i.e., a two-shift period).

-1 O0

ATE
RY

-200 l

o 5000 10000 15000 19ooo

ORBIT TIME (SEC)

FIGURE II ORBITAL TPS SURFACE TEMPERATURE HISTORY

The hot orbit temperature level and simulated solar UV were obtained using

a solar UV source. Because of the UV source spot size limitation (i.e., for

one solar constant intensity), the MMAPA test fixture TPS surface was illuminated

for 7.2 ksec (2 hrs) in each quadrant and 7.2 ksec (2 hrs) in the middle. How-

ever, during the fifth test cycle the solar UV exposure was increased from 36 to

72 ksec (i0 to 20 hrs) to determine if any time dependence could be detected.

The cold orbit environment was obtained with a liquid nitrogen cooled plate

placed directly over the test fixture.

Entry: The entry TPS surface temperature histories for entry from both hot

and cold orbital environments are shown in figure 12. It may be noted that after

about 200 sec, the TPS surface temperature is independent of the initial temper-

ature. The entry local static pressure is shown in figure 13. The test pres-

sure was modified slightly to remove minor pressure variations in the flight

pressure history which were not considered important to meeting test objectives.
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Test procedure. - The flight environments were simulated in a continuous

sequence in the thermal test facility. This approach not only provided a more

realistic sequence of events, but also improved the overall efficiency of test-

ing by reducing the number of times the test fixture had to be handled.

The thermal environments were monitored by measuring the backside tempera-

ture of the MMAPA test fixture, the TPS surface temperature adjacent to the test

fixture surface, the radiant heater susceptor plate temperature and local pres-

sure.

The backside temperature of the MMAPA test fixture was measured to verify

that the inner and outer TPS bondline temperatures did not exceed design limits.

Calculations, based on a one-dimensional analytical thermal model of the test

fixture (figure 14), were made to determine the respective bondline and structural

skin temperatures. Figures 15 and 16 show the predicted structural skin temper-

ature histories for ascent through both hot and cold orbits and entry from each.

It may be noted that (i) the skin temperature rise during ascent (figure 15) is

insignificant and (2) the temperature at the end of the orbit influences the

backside entry magnitude (figure 16). The predicted skin temperature histories

may deviate from the measured temperatures since the thermal model did not account

for the partial blockage of the backside cooling plate by a layer of insulation

as shown in figure 8(b).

OUTER BONDLINE
\

INNER BONDLINE,,,

Tb--

0.015" RCG COATING

1.785" HRSI

0.180" SIP

--0.157" ALUM

_ = 0.35

qrad

e = 0.80_T = 70OF

/////////I

FIGURE 14 ONE-DIMENSIONAL THERMAL MODEL OF MMAPA TEST FIXTURE
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Several calibration runs were made to establish the radiant heater control

temperature histories for the respective heating conditions. To obtain an

equivalent TPS surface temperature measurement, the test fixture was replaced

by an instrumented TPS block (i.e., an HRSI block with a surface thermocouple)

located at the midpoint of the test fixture position and a suitable insulation

to fill in the remaining space. This arrangement permitted indirect measurement

of the peak surface temperature in the middle of the test fixture and was used

to determine the relationship between the TPS surface temperature and the radiant

heater susceptor plate temperature. Using that relationship, the susceptor plate

temperature was adjusted to obtain the desired TPS surface temperature. There-

after, the susceptor plate temperature was controlled by the Data Trak system.

The instrumented TPS blocks just outside the test fixture boundary (figure 8),

designated "L" and "D", indicated the temperature at the test fixture edges.

Comparison of the edge and center temperatures shows the temperature gradient
over the test fixture surface.

The ascent heating simulation calibration data is shown in figure 17. The

fast surface temperature rise time was achieved by preheating the heater suscep-

tor plate before moving it over the test fixture. The temperatures following

the temperature peak were lower than desired, but this deviation is not consider-

ed an important factor.
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CALIBRATION FOR ASCENT HEATING - TESTS I-5
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For the hot orbit simulation tests, the solar UV source also served as the

TPS heating source. Calibration tests results showed that a surface equilibrium

temperature of about 389 K (240°F) was reached in about 7.2 ksec (2 hrs) at the

center of the illumination spot. Because of the limited spot size, the instru-

ment TPS blocks just beyond the edge of the test fixture did not measure the

edge surface temperature with acceptable accuracy.

The entry heating simulation calibration data is shown in figure 18. The

small time shift is due to the lack of preheating to the initial temperature

shown by the calculated entry temperature history (figure 12). However, the

measured temperatures follow the slope of calculated temperature history very

closely. The surface temperature after 1300 sec is slightly high due to the lack

of convective cooling which would be present in an actual entry.
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Ground Environment Simulation

The ground environmental test consisted of simulating those ground environ-

ments which could contribute to the deposit of contaminants on the Space Shuttle

TPS surface while on the ground after entry, or during prelaunch operations. The

environments of primary interest were dust, salt fog and humidity. Dust, parti-

cularly that from the side of a runway, contains a variety of materials (e.g.,

oil, metals, rubber, carbon, etc.), which combined with salt fog and high humid-

ity form a tightly bound deposit on the TPS surface. The subsequent ascent,

orbital and entry thermal environments could then contribute to a permanent film

fixed on the TPS surface, k_ile the TPS surface contamination for a single mis-

sion cycle may be negligible that from a number of missions could build up and

result in significant RF degradation which is of concern.

Test setup description. - The ground environments simulation cabinet (fig-

ure 19) consisted of: (i) an existing metal container (internal dimensions of

76.2 x 156.2 x 96.5 cm (30 x 61.5 x 38.0 in.)); (2) an instrument fan; (3) a

shallow pan for water; (4) a hygrometer; and (5) two small ports added to the

container walls to admit dust and salt fog. An existing rail inside the con-

tainer provided a convenient mounting bracket for the fan and a support for the

test fixture. The hygrometer was mounted in front of an existing port at one

corner of the container. The port for admitting the dust was placed above the

test fixture position and the port for the salt fog in the end above the fan.

Figure 19 also shows the test fixture transport box with the dummy antenna and

antenna mounting ring inside.

Test environments. - The ground environments used for the tests are subjec-

tive because there are no specifications which cover the type of contamination

considered in this test program. Therefore, the test environment exposure dos-

ages were determined experimentally prior to the start of testing. The methods

for obtaining and controlling the respective environments are described below.

Dust: The dust environment of interest is that which simulates the results

of gusting dust clouds or long exposure to airborne dust particles which could

settle on the TPS surface and form a tightly bound surface deposit or film.

The dust for the MMAPA tests was taken from the side of an Ellington Air

Force Base runway. To obtain the desired particle size, the dust sample was

placed in a ball mill and milled for about 20 hours. This reduced the particle

size to the proper range, about like flour, and mixed the constituents throughly.

A small shop vacuum cleaner was used to create a dust cloud in the test

chamber above the test fixture. The vacuum cleaner output port was placed over

a small hole in the chamber top (i.e., the chamber acts as the vacuum bag) and

measured dust quantity (3.5 gm) dumped into the intake. This technique gave a

reasonably uniform dust deposit and was superior to other methods that were tried.

[:
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FIGURE 19 GROUND ENVIRONMENTS SIMULATION CABINET

Glass witness plates (2 x 2 in. glass plates used to mount photographic

slides) were used to monitor the dust deposit density and uniformity. The rela-

tive density was measured by a standard laboratory device used to measure light

transmission. For the MMAPA tests, the measurements included the effects of

both the dust and salt fog residue. Pretest experiments indicated that a coat-

ing with a realistic appearance resulted in a 30% drop in light transmission

through the witness plate.
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Salt fog: The salt fog environment was created by spraying a fine mist of

salt water above the test fixture. The salt water was a 5% solution per MIL-STD-

810C. The mist was obtained with a pressurized laboratory atomizer. Pretest

experiments determined that a 5 sec operation of the atomizer was sufficient to

obtain the equivalent of several hours of salt fog exposure.

Humidity: The high humidity environment was easily achieved by the air

flow from the fan over the shallow pan of water. With the test chamber closed,

a relative humidity of 98 to 100% was obtained in 30 to 40 minutes. Starting

with dry air, only 30.0 cm 3 (1.83 in. 3) of water was required to obtain satura-

tion. Since the test cabinet was essentially air tight, the high humidity could

be maintained for long periods without replenishment of the water supply.

Test procedure. - Following each electrical test (except Test i0) the test

fixture was placed in the ground environments simulation cabinet. The respec-

tive environments were then introduced in the following sequence:

i. Humidity (3.6 ksec (I hr) exposure)

2. Dust (3.5 gm introduced by dust cloud over test fixture)

3. Humidity (57.6 ksec (16 hr) exposure)

4. Salt fog (5 sec spray over test fixture)

5. Repeat dust exposure of step (2).

Electrical Performance Testing

The electrical performance testing consisted of radiation pattern and imped-

ance measurements after each thermal test cycle. This provided data which was

compared with pretest data to evaluate changes in pattern shape, gain, axial

ratio and antenna impedance.

Test setup description. - The radiation patterns and impedance were measured

in the NASA-JSC anechoic chamber antenna pattern range. Major equipment compo-

nents included a Watkins Johnson frequency synthesizer (a frequency and power

stable signal generator), a Scientific-Atlanta (S-A) receiver, and S-A polar and

rectangular recorders. Figure 20 shows the MMAPA test fixture mounted in a 3 x

3 m (i0 x i0 ft) ground for pattern measurements. A standard gain horn was

mounted on the backside of the ground plane (figure 21) for use in reestablish-

ing a reference level before each test set. The test antenna was supplied by

Rockwell and is representative of the Shuttle S-band Quad antenna. Figure 22

shows the test setup for the impedance measurement measurements. The back side

of the antenna installation was covered with a plastic vacuum bag to keep the

polyimide laminate which supported the TPS over the antenna in intimate contact

with the antenna aperture. This procedure was used for both the pattern and

impedance measurements to ensure that the position of TPS over the antenna re-

mained stationary.

Data acquisition. - The radiation patterns were measured in both polar and

rectangular coordinates. Rectangular plots are more useful than polar plots for

analysis because the magnitude scale is expanded by a factor of about 3. Pat-
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FIGURE 20 TEST SETUP FOR RADIATION PATTERN MEASUREMENTS
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FIGURE 21 GAIN REFERENCE CONFIGURATION
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FIGURE 22 TEST SETUP FOR IMPEDANCE MEASUREMENTS
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terns were measured at frequencies of 1.8, 2.1 and 2.3 GHz. The patterns were

measured using rotating line or polarization in order to obtain axial ratio simul-

taneously with pattern shape. The peak linear gain can be converted to circular

gain by adding a gain factor (figure 23) which is a function of axial ratio.

@-plane patterns were taken for _ angles of 0 °, 45 ° , 90 ° and 315 ° (-45°). Figure

24 shows the coordinate system used for the antenna pattern. The pattern record-

ing convention was such that the right hand side of the polar plots (g variable)

corresponds to the _ angle designated for the pattern plane. However, the left

hand side of the rectangular plots corresponds to the right hand side of the

polar plots, so that, visually, one is the mirror image of the other. A fixed

ground plane and pattern tower rotation convention was maintained for each pat-

tern to minimize pattern error due to gear backlash, etc. The signal level was

reset to a reference level at each frequency by setting the peak gain of the

standard gain horn radiation pattern to that level. The pattern range repeata-

bility is estimated to be +0.25 dB.

3.0

2.0!

-3.0 .........

0.1 1.0 10.0 100.0

AXIAL RATIO - dB

FIGURE 23 CONVERSION FROM PEAK LINEAR TO CIRCULAR GAIN
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FIGURE 24 ANTENNA PATTERN COORDINATE SYSTEM

Since the VSWR of the antenna was very low, the impedance plots result in

small spiraling circles around the center of the Smith Chart. To improve resolu-

tion at specific frequencies of interest, the reflection coefficient was also

recorded with the magnitude increased by i0 dB (voltage ratio). The impedance

was measured in two frequency ranges, 1.7 to 1.9 GHz and 2.0 to 2.4 GHz.

A

Test Results

The primary test results of interest are those from the electrical per-

formance tests (radiation pattern and impedance measurements) performed after

each simulation of the ground and flight (thermal/pressure) environments. The

other test data from the environment simulations were used to verify that the

respective test parameters were within preestablished limits necessary to meet

test objectives.

Thermal environments verification. - Figure 25 shows the measured susceptor

plate and edge tile temperature histories during ascent simulation for the first

five tests. These temperature histories, also typical of the last five tests,

show good repeatability. Figure 26 shows the measured pressure histories during

the ascent simulation. The repeatability is generally good. Depressurization

nominally began at about 40 +i0 sec after the test start, except for Tests i, 3

and 9.
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The test fixture backside temperature histories during the hot orbit simu-

lation tests are shown in figure 27. Except for thermcouple T/C 2, the temper-

ature variations are very small. Figure 28 shows the pressure history for the

first hot orbit test (Test i). It is within 67 Pa (0.5 torr) of the pressures

measured for the hot orbit tests that followed (Tests 2 through 5).

Figure 29 shows the temperature histories of the center and edge tiles

during cold orbit calibration. The center tile is slightly colder than the

edge tile.
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Figure 30 shows the edge tile and test fixture backside temperature histories

for the five cold orbit tests. The repeatability was within about 6 K (lO°F).

Figure 31 shows the cold orbit pressure histories. The scatter in the data is

due in part to the limitation of the baratron pressure transducer (0 to 133 kPa

(0 to 1000 torr)) used. The pressure is generally below 93.3 Pa (0.70 torr),

the nominal low pressure limit of the test facility.

The radiant heater susceptor plate temperature histories for the first five

entry simulations are shown in figure 32. These temperature histories are also

typical of the last five tests. As can be seen, the repeatability is excellent.

Figure 33 shows the measured pressure histories during the entry simulations.

The repeatability is generally good.

The backside temperature histories for the test fixture during entry simu-

lation are shown in figures 34 through 37. Figure 34 shows the output of all i0

thermocouples (figure 6) for entry from the hot orbit condition (Test i).

Thermocouple 2 did not function properly during this test. The temperature

gradients are, in general, small (approx. ii k (20°F)). Figure 35 shows the
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output of T/C 8 for all entry heating tests from the hot orbit condition. The

variation in the peak temperature is within 8 K (15°F). Figure 36 shows the

output of all i0 backside thermocouples for entry from the cold orbit condition

(Test 6). The spread in temperature is about the same as for the hot orbit case

(figure 34) but the peak temperature is lower by about the difference in the

initial values. Figure 37 shows the output of T/C 8 for all the entry heating

tests from the cold orbit conditions (Tests 6 through i0). The variation in the

peak temperature is about the same as for the hot orbit case. In both the hot

and cold orbit tests, the test fixture backside temperature rise from the

initial condition was about 119 K (2150F). The spread in the outputs of T/C 8

is due to differences in the initial temperatures, variations in the local

pressure and probably the repeatability of the input temperature pulse. In

general, however, the temperature history repeatability was excellent.

Ground environments verification. - The verification of the ground environ-

ments was limited to the witness plates used to verify the dust and salt fog

residue density, periodic observation of the humidity level, and general adher-

ence to the procedures established by pretest experimentation. The particular

dosage was subjective because there are no establishedenvironmental specifica-

tions which cover the contaminating effects investigated in this program. Table

II shows the sequence and "dosage" used for each of the simulated ground environ-

ments during each test. There was no ground environment exposure prior to the

first thermal test cycle. In two cases the humidity exposure time was extended

from 58 ksec (16 hr) to 317 and 230 ksec (88 and 64 hr). During the last test

cycle the dust and salt fog dosage was increased significantly.

Electrical performance. - Radiation patterns and impedance data were used for

evaluating the electrical performance of the contaminated Shuttle TPS HRSI. The

data obtained after each test cycle were compared with the pretest data and the

changes determined.

Radiation patterns: The radiation patterns were evaluated in selected

angular regions, at @ = 60 to 70 ° , both left and right of e = 0 °, and at g =

0° ! 5° as shown in figure 38. The pattern regions at @ = 60 ° to 70 ° were

selected for evaluation because the gain in that region is critical during Shut-

tle ascent and orbital insertion. The region at e = 0 ° provides an intermediate

point for evaluation. In these pattern regions, the worst case change in gain
and/or axial ratio was used as the evaluation criteria.

Reference (baseline) radiation patterns (figures 39, 40 and 41) were

measured before the MMAPA test fixture was exposed to the ground and thermal

environments. The reference radiation patterns measured in rectangular coordin-

ates are given in Appendix I. They were used for the analysis because of better

resolution than the polar patterns. Typical radiation patterns after the test

fixture was exposed to a number of ground and thermal environment test cycles

(e.g., Test 4) are shown in figures 42, 43 and 44. The equivalent rectangular

radiation pattern plots are shown in Appendix II. Comparison of these patterns

(Test 4) with the reference patterns shows a 0.3 to 1.0 dB circular gain increase

at 1.8 GHz (except at _ = 315°), a +0.i to -1.2 dB gain variation (primarily a

decrease) at 2.1 GHz, and a 0.2 to 0.5 dB gain decrease at 2.3 GHz. These

results are typical of the range of gain changes found in the radiation patterns.
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A detailed analysis of the radiation patterns from each test was made and

the results plotted to show the test by test variations relative to the refer-

ence data. The items considered were axial ratio, circular gain changes due to

axial ratio changes, linear gain changes and total circular gain changes due to

both linear gain and axial ratio changes.

Figures 45, 46 and 47 show the axial ratio variations of the left, right

and center pattern regions for each of the test frequencies. The axial ratio

changes are predominately on the plus side, which corresponds to a circular gain

decrease. The maximum axial ratio increase or decrease was 1.4 dB.

The variations in circular gain caused by the changes in axial ratio (fig-

ures 45, 46 and 47) are shown in figures 48, 49 and 50. The maximum increase

and decrease in circular gain for each frequency and pattern region is shown in

table III. In the critical left and right pattern regions, the maximum gain

loss ranges from 0.2 to 0.5 dB. In general, the gain decreases are more preval-

ent than the gain increases.

The changes in linear gain are shown in figures 51, 52 and 53. The respec-

tive values were corrected for the difference in the peak gain of the standard

gain horn radiation pattern recorded at the beginning of each pattern set and

that recorded with the reference patterns. Table IV shows the variation in the

standard gain horn peak for all the tests. In most cases the variation is with

+0.2 dB of the reference level.

The changes in circular gain with both linear gain and axial ratio changes

combined are shown in figures 54, 55 and 56. At 1.8 GHz, the gain is increased

for most tests, but at 2.1 GHz the opposite is true. However, at 2.3 GHz the

gain changes are more evenly divided between increases and decreases. Data from

two of the tests does not appear to be consistent with data from preceding or

succeeding tests and, therefore, should be considered accordingly. The data in

question is for Test 4 at 1.8 GHz and _ = 315 ° (figure 54) and Test 9 at 2.1 and

2.3 GHz for all _ angles (figures 55 and 56).

In general, analysis of the radiation patterns for 1.8 and 2.3 GHz does not

indicate any significant degradation in the electrical performance of the TPS

which is attributable to contamination by the test environments. There is also

no indication in the data at any of the test frequencies which reveals the dif-

ference between the hot and cold orbit simulations. At 2.1 GHz, however, the

results of the radiation pattern analysis (figure 55) shows a gain decrease of

about 1 dB, particularly for the _ = 45 ° and 90 ° plane patterns. Although the

= 45 ° plane passes through the test fixture TPS surface area, where the coat-

ing created by the test environments seemed heaviest, it does not appear that

this surface condition contributed to the gain decrease, since it was observed

in the electrical test results after the first thermal test, and before the first

ground environments test. Therefore, it is likely that the gain decrease was

caused by the simulated entry heating, since this produces a temperature (867 K

(II00°F)) high enough to burn the silicone resin (0.13 to 0.27% of the fiber

weight) contained in the TPS tiles for waterproofing. Similar results were ob-

tained in a previous test program (ref. 3) where entry heating was also simulated

with a radiant heat source. In that case,the burning of the silicone resin (4
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to 5% of the tile fiber weight) resulted in a carbonaceous coating which caused

a transmission loss of i0 to 12 dB and considerable radiation pattern distortion.

However, in the first part of that program (ref. 2), where entry heating was

simulated in a plasma facility and where there was gap flow over the TPS surface,

the change in electrical performance was negligible. This test result leads to

the conclusion that the electrical performance degradation found in the current

results may have been reduced if gas flow had been present over the TPS surface

during the entry heating segment of the thermal test.

Impedance: The results of reference impedance measuremmnts are shown in

figures 57 and 58. The results of post environment test impedance measurements

(e.g., Test 5) are shown in figures 59 and 60. Expanded scale (i0 dB) plots

(not shown) were also recorded in order to improve resolution of the data points

for the frequencies selected for detailed evaluation. Comparison of figures 59

and 60 with the reference data shows minor changes which do not appear to be of

significance. In order to determine if a test trend could be identified, the

reflection coefficient magnitude and phase angle were taken from the impedance

plots at 0.05 GHz increments from 1.70 to 1.90 GHz and 2.00 to 2.40 GHz. The

VSWR magnitude and the associated mismatch loss were calculated from the reflec-

tion coefficient. Figures 61 and 62 show typical VSWR magnitude and angle, and

mismatch loss variations over the frequency range. The maximum VSWR for any

frequency or test was 1.47:1 (figure 63), which corresponds to a mismatch loss

of 0.16 dB. This occurred at 2.25 GHz for Test i where the VSWR increased from

1.26:1 to 1.47:1, a mismatch loss increase of 0.i dB. These changes in VSWR and

mismatch loss are also the largest to be found in the data. With few exceptions

the variation in VSWR is less than _+0"05 about a particular average VSWR. The

variation in phase angle is generally less than +i0 ° and +20 ° in a few cases.

The greatest VSWR angle variation (figure 62(d))--occurs where the VSWR is general-

ly less than i.i:i and, therefore, would be of little significance.

Figures 64 and 65 show the data for all the tests plotted on an expended

scale Smith Chart. These plots show the combined variation of VSWR magnitude

and phase angle at each of the test frequencies. The data points at each fre-

quency, not identified by test number, are closely grouped except for a few

isolated points.

In general, the impedance data does not show a change trend which would be

expected to result in degraded antenna performance. In most cases the data

scatter is small and both the VSWR magnitude and phase angle well behaved (i.e.,

their variations are small or insignificant).

Physical observations. - After each thermal test the test fixture surface

was examined visually to evaluate the TPS surface appearance. The following
observations were made:

. Test 1 - Slight changes in the TPS surface appearance were noted.

The gaps appeared to be coated with an oily substance, probably the

silicone used for waterproofing. The outer edges of the TPS tiles had

a smoky appearance.

m
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,

.

Test 2 - The dust deposit appeared to be baked on and gave a crusty

appearance with reddish colored spots distributed over the TPS surface.

Test 5 - The TPS surface appeared to have a more reddish coloring.

However, photos taken to document this do not show this as clearly as

desired. Figure 66 shows a photo of the test fixture after thermal

Test 5. The coloring at the TPS surface edges different from the

center. The TPS tile sides also show the smoky appearance mentioned

above.

Test 6 - The reddish color on the TPS tiles surfaces appeared more

intense. Figure 67 shows a photo of the test fixture surface. A dis-

coloration can be seen over the surface in the form of speckles or dots.

These dots were a more reddish in appearance than the adjacent surface.
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FIGURE 32 ENTRY HEATING REPEATABILITY - TESTS I-5
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TABLE II

GROUND ENVIRONMENTS TEST SEQUENCES

TEST NO. l

1

2 HI

3 HI

4 H2

5 HI

6 HI

7 HI

B HI

9 HI

10 H2

ENVIRONMENT SEQUENCE

2 3 4 5 6

D1 $1 H2

D1 H2 $1 D1

$1 D1

D1 H2 $1 D1

D1 H2 $1 D1

D1 H3 $1 D1

Dl H4 S1 D1

Dl HI S] D]

$I DI S] D] Sl

NOTES: HI = HUMIDITY (1HR EXPOSURE)
DI = DUST (3.5 gm)
$I = SALT FOG (5 SEC SPRAY)
H2 = HUMIDITY (16 HR EXPOSURE)
H3 = HUMIDITY (88 HR EXPOSURE) - 12/23-12/27/76
H4 = HUFIIDITY(64 HR EXPOSURE) - 12/31/76-I/3/77
D2 = DUST (10.5 gm)

D2
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TABLE Ill

MAXIMUM INCREASE AND DECREASE IN CHANGES

CIRCULAR GAIN CAUSED BY AXIAL RATIO

FREQUENCY (GHz)

1.8
PATTERN
REGION +dB -dB

LEFT 0.4 0.5

RIGHT 0.2 0.3

CENTER 0.2 0.I

2.1 2.3

+dB -dB +dB -dB

0.3 0.4 0.6 0.2

0.4 0.4 0.6 0.5

0.2 0.5 0.2 0.5
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TABLE IV

STANDARD GAIN HORN PATTERN LEVEL (-dB)

TEST

NO.

REF

1

2

3

4

5

6

7

8

9

IO

NOTE:

FREQUENCY (GHz)

1.8 2.1 2.3

7.8 5.2 5.3

7.9 5.3 5.2

7.6 5.1 5.3

7.8 4.5 5.3

7.7 5.1 5.4

7.8 5.1 5.4

7.8 5.2 5.5

7.8 5.1 5.2

7.8 5.1 5.1

7.6 4.8 5.2

8.0 5.2 5.2

GAIN LEVELS ARE RECORDED
LEVELS ON RECTANGULAR CHART
PAPER WHICH HAS A MAXIMUM
LEVEL OF O dB AND A MINIMUM
LEVEL OF -40 dB.
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EXPANDED SCALE

Zo = 50 OHMS

FIGURE 64 IMPEDANCE - TESTS I-I0 (1.7 - 1.9 GHz)
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-2.10 GHz

2. O0 GHz :

EXPANDED SCALE

Zo = 50 OHMS

A

(a) 2.00 - 2.20 GHz

FIGURE 65 IMPEDANCE - TESTS l-lO (2.0 - 2.4 GHz)
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(b) 2.30 - 2.25 GHz

EXPANDED SCALE

Zo = 50 OHMS

FIGURE 65 IMPEDANCE - TESTS l-lO (2.0 - 2.4 GHz) (CONT)
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EXPANDED SCALE

Z = 50 OHMS
o

(c) 2.35 - 2.40 GHz

FIGURE 65 IMPEDANCE - TESTS l-lO (2.0 - 2.4 GHz) (CONT)
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FIGURE 66 TEST FIXTURE AFTER TEST 5
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FIGURE 67 TEST FIXTURE AFTER TEST 6
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THERMAL VACUUM TESTING

The objective of this task (Task 2.3.1) was to validate the accuracy of the

analytical thermal model developed in the first part of this contract (reference

I) for use in support of the Space Shuttle S-band Quad antenna design. The

thermal model is a representation of the antenna and test fixture also designed

and fabricated in the first part of this contract. Thus, node points in the

analytical model are directly related to physical locations in the test fixture.

To accomplish this task, the latest Shuttle design data (e.g., heating

rates and TPS thicknesses) were incorporated into the model to provide thermal

vacuum test control parameters and response data for comparison with measured

data. A test plan was prepared for two flight conditions, one simulating maxi-

mum heating in orbit (hot orbit), followed by entry heating and the other simu-

lating a minimum heating (i.e., maximum cooling) orbit (cold orbit), also fol-

lowed by entry heating. The data was analyzed by modifying the thermal model to

account for actual test conditions and heat leaks at the test fixture boundaries.

This section describes the various environments simulated, the test facili-

ties and configuration, and discusses the test results and the boundary modifica-

tions made to show the validity of the analytical thermal model.

Test Fixture

The test fixture, originally designed and fabricated in the first part of

this contract, used for the thermal vacuum testing, is described in Volume 1 of

this report (reference i). It was designed to account for all significant fac-

tors which would influence the thermal response of the antenna resulting from

ascent, orbital and entry flight environments. These factors include various

aspects of the Space Shuttle Orbiter construction in the vicinity of the antenna,

the test facility and its capabilities, and the test setup and instrumentation

requirements. A picture of the test fixture, wrapped with a Mylar multi-layer

insulation blanket, is shown in figure 68. The insulation blanket is intended

to minimize any side interface from the test facility by creating an adiabatic

wall. Other photos and a detailed description of the test fixture may be found
in reference i.

Structure. - A sketch of the test fixture, which illustrates its design and

construction details, is shown in figure 69. Basically, the fixture duplicates

a nominal layer of SIP (Strain Isolator Pad) bonded to the structural skin, and

the intervening substrate construction details to the interior cabin wall of the

Space Shuttle Orbiter. A 0.254 mm (0.010 in.) sheet of stainless steel was

bonded to the SIP to provide for controlling to outer bondline (HRSI (High Tem-

perature Reusable Surface Insulation)/SIP) temperatures. The surface of the

stainless steel sheet is sprayed with a high emissivity coating for improved

thermal response from a radiant heat source or sink (i.e., Quartz-lamp heaters

and/or vacuum chamber liquid nitrogen (LN2)-coole d shroud). The test fixture
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FIGURE 68 THERMAL TEST FIXTURE PRIOR TO INSTALLATION IN TEST CHAMBER

surface area, 1.23 x 1.23 m (4 x 4 ft), was determined from a trade-off of test

facility size capabilities and requirements for an adiabatic boundary.

One slight deviation from the original design occurred in the internal

insulation configuration. The 0.846 cm (0.333 in.) thick Multi-Layer Insulation

(MLI) blanket under the TG-15000 insulation batt design was replaced by an equal

thickness of the TG-15000 material. During test preparation the MLI material

was not available. Substitution of the TG-15000 was considered the best choice

from both the standpoint of analytical model modification and availability.
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FIGURE 69 THERMAL TEST FIXTURE - DESIGN DETAILS
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Antenna. - Photos of the S-Band antenna installed in the test fixture are

shown in figures 70 through 72. This installation was provided for by a remov-

able circular panel of stainless steel and SIP (figure 70) which was bonded to

the antenna after installation. After bonding, the gap around the panel edges

was covered with a metallic tape to minimize any radiant heating into the gap

and painted black to match the emissivity of the stainless steel top skin (fig-

ure 68).

FIGURE 70 ANTENNA INSTALLATION IN TEST FIXTURE - TOP VIEW
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FIGURE 71 ANTENNA INSTALLATION IN TEST FIXTURE - BOTTOM VIEW
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FIGURE 72 TEST FIXTURE WITH ANTENNA - BOTTOM VIEW

The antenna as received did not include a dust cover. The dust cover pro-

vides a barrier to heat transfer between the backside of the antenna components

and the surrounding structure and is included in the analytical thermal model.

At first, elimination of the dust cover from the analytical thermal model was

considered. However, this was found to be a not-so-simple and uncertain task

because of the computer program complexity. Therefore, it was decided to impro-

vise a dust cover from aluminum foil (heavy gage) and tape, coat it with black

emittance paint, and install it as shown in figure 73.
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DUST COVER

• , . °

FIGURE 73 ANTENNA WITH DUST COVER INSTALLED

Instrumentation. - The test fixture and the antenna were instrumented with

49 28-gage Type K (Chromel-Alumel) thermocouples: 33 on the test fixture and 16

on the antenna. Descriptions of all the thermocouples, their locations and

corresponding nodes in the analytical thermal model are listed in table V.
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TABLE V

THERMAL TEST FIXTURE INSTRUMENTATION LOCATIONS

NUMBER

1
2

3

4

5

6

7

8

g

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 •

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

4S

46

47

48

49

50

THERMAL MODEL
COMPONENT LOCATION NODE NO.

S.S. skin (14) Top Side

'r

S.S. skin

Structural skin (13)

Ip

Structural skin

S.S. skin

t t
S.S. sktn
Structural skin

i

Structural skin
TG-lSO00 (2)

TG-15000

Cabin Wall (4)

Cabin wall

Antenna aperture cover (I)

Antenna flange (2)

Antenna flange

Antenna flange (2)

Antenna flange

Circuit Board (1)

Center element wall (2)
Center element wall

+X element wall (2)
+X element wall

+Y element wall (2)

+Y element wall

-X element wall (2)

-X element wall

-Y element wall (2)

-Y element wall

S.S. skln

S.S. skin

Pressure

X=O, Y=I6

X=16, Y=-I6

X--I6,Y-O

X=-16, Y=I6

X=O, Y=8

X=16, Y=O

X-8, Y-O

X-8, Y-8

Center, Top Side

X-8, Y-8 Top Side

X-8, X=-8

X--8, Y=-8
X=-8, Y'8

X-O, Y=]6

X=16, Y=O
X=O, Y--16

X'-16, Y=O Top Side
X=16, Y-16 Top Side

X--16, Y=-I6

X-O, Y--16 Top Side

X=-16, Y=16 TOp Side
X-16, Y=I6

X-16, Y--16
X--16, Y--16

X--16, Y-16 Top Side
X-O, Y=O Top Side

X-12, Y-12 Top Side

X=12, Y-12 Top Side
X=12, Y=-12
X=-12, Y=-12

X--12, Y-12 Top Side
Center Outside

r-5.O, 0=22.5, Inside
r-5.0, 0-202.5 Inside
r-5.0, 0=67.5 Inside

r-5.0, 0=247.5 Inside
Center Bottom

z=-2.0, 0=45

z=-2.0, 0=225
z=-2.0, 0=45
z=-2.0, 0=225

z=-2.0, g=45

z=-2.0, 0=225

z=-2.0, 0=45

z=-2.0, @=225

z=-2.0, 0=45
z=-2.0, O=225

X=I6, Y=8 Top Side

X=8, Y=16 Top Side

216

214

222

214

220

222

223

219

224

156

156

IS6

156

IS3

15g

153

159

214

214

216

146

151

151

151

151

265

265

276

276

276

276

69

76

76

71

71

225/230

63

63

60

59

61

62

59

60

62

61

218

215
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The locations of thermocouples on the test fixture structure and insulation

are illustrated in figure 74. The 14 thermocouples located on the stainless

steel top sheet were used for regulating heat input (i.e., controlled to the

outer bondline temperatures) and/or verifying symmetrical heating of similar

areas. The four thermocouples (T/C 28 through 31) on the bottom plate were used

for controlling to a "cabin wall" temperature. The remaining 15 thermocouples

on the test fixture skin/stringer panel and TG-15000 top side, and the 16 thermo-

couples on the antenna were used to measure thermal responses. Sketches of

antenna thermocouple locations and their relative nodes in the analytical model

are shown in figures 75 through 77. The antenna cover thermocouple installation

is shown in figure 70.

Some of the thermocouple locations described above differ from those

originally defined in the design of the test fixture (reference i). Five

thermocouples were relocated to the stainless steel surface to provide: (i)

better control and check on symmetry of heat input, and (2) more thorough des-

cription of temperatures for verification of the analytical thermal model. Also,

no thermocouples were located on the improvised dust cover as originally

specified.

Wherever feasible, particularly on the stainless steel top skin and antenna,

the thermocouple junction was formed by utilizing the surface itself. That is,

the thermocouple wires were separated by about 1.6 mm (1/16 in.) and individually

attached to the surface by tack-welding (stainless steel) or taping (antenna).

This attachment method essentially eliminates erroneous response due to the

separation of a junction from the surface.

Thermocouples on the structural skin/stringer panel, which measure the TPS

inner bondline temperature, were installed during fabrication of the test fix-

ture. The thermocouple leads were passed through holes in the stringers and skin

and bonded to the outer surface (figure 78).

The leads of TG-15000 insulation thermocouples were simply twisted to form

a junction and stuck into the upper surface of the batt (figure 79). One thermo-

couple was located in the center of the test fixture (immediately under the

antenna dust cover) and the other in the center of the positive X-Y quadrant

(figure 74).

The thermocouple installation on the bottom panel used for maintaining a

"cabin wall" boundary temperature is shown in figure 80.

Thermal Environments

The Thermal Vacuum testing sequence consisted of only orbital and entry

simulation. Pretest analyses indicated that no significant temperature changes

occur during ascent at or inward of the outer bondline, (i.e., HRSI/SIP inter-

face) and, therefore, that simulation of the ascent environment was unnecessary.
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IHERMOCOUPLE LOCATION
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FIGURE 74 TEST FIXTURE THERMOCOUPLE LOCATIONS
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FIGURE 75 ANTENNATHERMOCOUPLELOCATIONSAND NODAL ARRAY- TOP VIEW
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FIGURE 78 SKIN-STRINGER PANEL THERMOCOUPLE INSTALLATION
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FIGURE 79 TG-15000 INSULATION THERMOCOUPLE INSTALLATION
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FIGURE 80 CABIN WALL PANEL THERMOCOUPLE INSTALLATION
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Two environments were simulated: one for a hot orbit condition with sub-

sequent entry, and the second for a cold orbit and entry. The hot orbit repre-

sents a condition of continuous solar illumination of the TPS over the antenna,

and the cold orbit the contrary. The two extreme orbital conditions were con-

sidered since they provide a set of limiting environments for checking the

analytical thermal model.

Temperature. - Analyses of the orbital conditions considered for these

tests revealed that duplication of orbital temperature histories would necessitate

test times of excessive duration. Thus, orbital temperature simulation (figure

81) consisted of achieving the computed outer-bondline equilibrium temperature

within a reasonable time which would not thermally shock the test fixture and

antenna. This temperature was then maintained sufficiently long to stabilize

substructural and antenna temperatures and provide a roughly steady state con-

dition prior to initiating entry. The simulation of the two orbital conditions

primarily provided different initial temperatures and as shown subsequently,

slightly different temperature profiles for check-out of the analytical thermal
model.

The thermal model (figure 82) developed in the first part of this contract

(reference i) was modified to update the HRSI thickness to 4.57 cm (1.8 in.) and

200

160

A

J.

-80
0

FIGURE 81

INITIATE ENTRY
SIMULATION

5000 10000 15000

ORBIT TItlE (SEC)

HRSI BONDLINE TEMPERATURES FOR ORBITAL REPRESENTATION
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the outer bondline (HRSI/SIP) thermal response was then determined for the anten-

na region using a current entry heating history (figure 83) supplied by NASA-

JSC. This heat flux history is for entry from the hot orbit condition. The TPS

surface temperature history in figure 83 is that computed at node location 314

(figure 82), i.e., for the HRSI surface at an outboard location of X = Y = 40.6

cm (16 in.). The curve, identified by the symbol for total heat flux, is the

amount which is actually transferred into the model allowing for surface reradia-

tion.

The resulting thermal responses at the outer bondllne for entry from the

two orbital conditions are illustrated in figure 84. As indicated, a maximum

temperature gradient (difference) of over 28 K (50°F) may occur over the bondline

(or the test fixture stainless steel top skin).

Pressure. - The minimum attainable vacuum chamber pressure of about 1.33 mPa

(10 -5 torr) was considered adequate for representing orbital conditions. The

pressure history, supplied by NASA, at the lower S-band Quad antenna location

during the Space Shuttle Orbiter entry is indicated by the solid curve in figure

85. Duplication of thls environmental parameter is necessary to account for the

pressure-dependent heat transfer through such materials as the SIP and TG-15000.

However, since this dependence is on pressure order of magnitude, a history de-

fined by the dashed curve was considered an adequate representation for test

purposes, besides being easier to maintain.
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Test Facility

The Thermal Vacuum tests were conducted in Space Chamber E located in

Building 33 of the NASA-JSC Thermal Vacuum Laboratory. Quartz-lamps and the

vacuum chamber liquid-nitrogen-cooled shroud were used to provide the required

heating/cooling environments. A data acquisition system was utilized to store

data for post test processing and simultaneously display thermocouple temperatures

for thermal environment control.

Temperature simulation equipment. - A sketch illustrating the test setup is

shown in figure 86. Photos of the various items depicted in the sketch and/or

used for environmental simulation are shown in figures 87 through 91. An aluminum

plate was provided inside the chamber (figures 87 and 88) to support the test

fixture under the radiant heat source. For thermal isolation, Teflon pads,

approximately 0.64 cm (0.25 in.) thick, were placed under the test fixture legs.

Besides acting as a platform for the test fixture, the support plate was

also used as a radiation source/slnk to maintain the cabin wall boundary temper-

ature at the bottom panel of the test fixture. Strip heaters were fastened to

its lower surface (figure 89) for temperature control, and both of its surfaces

were coated with a high emissivity paint to promote radiative heat transfer with

the bottom panel (cabin wall) of the test fixture and the liquid nltrogen-cooled

shroud. Narrow blankets of Mylar (figure 89) were located under the support

plate to reduce the radiation view factor to the shroud and keep its cooling

effect from overpowering the heating capabilities of the strip heaters.

A grid of Mylar curtains (figures 86 and 89) was used to provide individu-

ally controlled areas of heating over the test fixture surface. Each grid area

was roughly 40.5 cm (16 in.) square and encompassed the heat input from a bank

of three parallel Quartz lamps. Space between the lamps permitted radiation to

the chamber shroud for cooling purposes or balancing the heat input from the

lamps, as required.

The lamp filaments were also 46.6 cm (16 in.) long, but the lamp casing and

mounts required a total length of about 51 cm (20 in.). This caused the network

of lamps to protrude beyond the curtains (figure 89). However, a radiometer

survey indicated no serious influence on the heating distributions in the affect-

ed grids. This survey also revealed an insignificant increase of heat transfer

along the grid edges, particularly in the corners.

Heat output of the lamps was regulated using the rheostat-type controllers

shown in figure 90. Similar controllers, also shown in figure 90, were used for

the strip heaters attached to the bottom plate of the test fixture support. The

data system console displayed temperature data required for varying the individual

controllers.
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FIGURE 87 NASA-JSC SPACE CHAMBER E WITH TEST FIXTURE SUPPORT STRUCTURE
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FIGURE 88 THERMAL VACUUM TEST INSTALLATION
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FIGURE 89 THERMAL ENVIRONMENT CONTROL CONFIGURATION
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FIGURE 91 ENVIRONMENT CONTROL AND DATA ACQUISITION SYSTEMS
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Adequate control for the nine grid openings was provided using only five

controllers. Because of the symmetry of both test fixture construction and

bondline temperature distributions, two lamp banks over areas having the same

temperature were wired to the same controller. Lamp banks on the same controller

are identified in figure 86 by the use of the same letter, and prime, in the

grid schematic. As noted in this figure, the lamp banks in circuit AA' and BB'

were wired in parallel, and those in CC' and DD' in series. As will be discussed

later, the type of circuit for connecting the two lamp banks appears to have

influenced heating symmetry. The lamp bank in the center grid (circuit E) was

individually controlled.

Pressure simulation equipment. - For the thermal vacuum tests, active pres-

sure control was required during entry simulation only. Control was achieved

by manually-operated valves and reading a Wallace and Tiernan, 0 to 133

kPa (0 to i000 torr absolute) gage. Chamber pressure was recorded on the data

system from a baratron pressure transducer with a 0 to 13 kPa (0 to i00 torr)

head. The chamber was repressurized with dry nitrogen gas and shop air (figures

90 and 91). The dry nitrogen was used to minimize or eliminate possible conden-
sation on the test fixture and chamber shroud.

Data acquisition system. - &Hewlett-Packard data system was used to record

the output from the 49 thermocouples located on the test fixture and antenna and

from the baratron pressure transducer. The thermocouple outputs were converted

to temperatures (in °F) by the data system and along with the baratron output,

stored on magnetic tape for post test processing (tabulation and plotting).

Simultaneously, 40 selected data channels (both control and response thermo-

couples temperature data) were displayed on a console located by the heater
controls.

Test Procedure

The Thermal Vacuum tests consisted of simulating the thermal environments

(temperature and pressure) experienced by the TPS substrate and antenna by regu-

lating the boundary temperature and ambient pressure conditions of the test fix-

ture. Calculated temperature histories considered representative of the two

extreme orbital environments and subsequent entry were used for these condi-

tions. The TPS substrate and the antenna thermal responses were measured and

recorded for comparison with the predicted values.

The general flow of test operations is illustrated in figure 92. The cham-

ber pressure was controlled to represent the orbital condition and the time-

dependent variation during entry. Heat input to the test fixture was provided

by individual banks of Quartz lamps radiating through a grid of Mylar curtains

to the top surface of the test fixture, and strip heaters controlling the temper-
ature of the support plate for radiation to the test fixture bottom surface

(i.e., cabin wall boundary).

Thermal control. - All temperature control was accomplished by manual reg-

ulation of rheostat-type heaters to control the heat transfer at the top and

bottom surfaces of the test fixture.
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Temperatures over the test fixture top surface (i.e., stainless steel top

skin) were obtained by adjusting the output of a control unit until the measure-

ment of the respective "control" thermocouple (T/C i, 2, 6, 9 or 18), matched

the desired value. These thermocouples (figures 74 and 86) along with four

others (T/C 3, 4, 19 and 20) were located in the center of a skin area under

each lamp/curtain grid. The heating of two symmetric areas was controlled to

only one surface temperature to minimize the number of control units. The four

non-control thermocouples (referred to as "companions" (e.g., T/C 20 is a com-

panion of T/C i)) were used for the purpose of checking the temperature symmetry

of uncontrolled areas.

The remaining top skin thermocouples (T/C 5, 7, 8, 48 and 49) played a rela-

tively minor role in thermal control. Along with four of the control thermo-

couples (T/C i, 6, 9 and 18) they formed a three-by-three matrix of measurement

points to match the nine innermost computation (node) points of the outer TPS

bondline in the analytical model.

The four thermocouples (T/C 28 through 31) on the bottom panel of the test

fixture were used with two controllers for the strip heaters on the bottom plate

to maintain the panel at a constant "cabin wall" temperature of about 307 K

(92°F) for an entire test.

Except for T/C 48 and 49, temperatures measured by all of the above thermo-

couples were displayed on a data system console located near the heater control

units. During the test, the displayed temperatures were monitored for any

ambiguities, especially significant deviations between control and companion

thermocouples. The data display was also used to monitor substructural and

antenna temperatures. These temperatures were used to ascertain stabilized

conditions and adequate test duration.

Pressure control. - The pressure was controlled by manually operated valves.

Specific control procedures for orbit and entry simulation are discussed in the

following sections.

Pretest. - Prior to testing, the top half of the test fixture (figure 74)

was removed and all interior and bottom panel thermocouples checked for response,

location and identification. The top half was then replaced and the fixture

sides wrapped with an insulation blanket. This blanket, consisting of about 8 to

I0 folds of Mylar foil, was on the average about 2.54 cm (i.0 in.) thick. The

blanket was lapped over the fiberglass edge structure of the test fixture, leav-

ing only the stainless steel top skin directly exposed. The thermocouples on

the top skin were then checked for response, location and identification.

After the thermocouple checks, the test fixture was placed on the bottom

plate of the support structure inside the chamber (figure 88). Alignment of the

test fixture with the Quartz-lamp/Mylar-curtain grid was checked to ensure bal-

ance of the top surface areas under lamp banks on the same controller.
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The chamber was then closed and pumped down, and the fixture was precondi-

tioned to achieve stabilized temperatures of about 319 K (ll5°F) over the top

surface and 307 K (92°F) on the bottom panel. These temperatures were maintained

until a steady-state condition was approximated throughout the test fixture

before initiating the test.

Orbit temperature. - From the stabilized initial condition mentioned above,

temperatures of the top test fixture surface were controlled to one of the tem-

perature histories shown in figure 81. The hot orbit test was performed first.

The outer bondline orbital-equilibrium temperature was maintained until the

various substrate and antenna temperatures as observed on the data system console

reached an approximately stabilized condition. When the stable condition was

achieved, entry simulation was initiated. During the entire orbital simulation,

chamber minimum pressure was maintained. It was monitored periodically using an

ion pressure gage.

Entry temperature. - The temperatures of the top surface were controlled

to the appropriate temperature histories shown in figures 93 and 94 for entry

after either the hot or cold orbit simulation, respectively. These figures also

show variations over the test fixture surface computed using the analytical

thermal model and discussed in the Thermal Environment section (figure 84). The

solid curves identify both the control and companion thermocouple temperature

histories. The dashed curves indicate the computed response temperatures at

other surface thermocouple locations.
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FIGURE 93 CALCULATED HRSI BONDLINE TEMPERATURE HISTORIES - ENTRY FROM HOT ORBIT
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Substrate temperatures displayed on the

tored to determine if they had peaked out in

test analysis. The test was then terminated.

data system console were also moni-

the time period predicted by pre-

Entr_pressure. - The entry pressure environment was simulated by repres-

surizing the chamber to that defined by the dashed curve in figure 85. Chamber

pressure was manually controlled to the reading on the Wallace and Tiernan

gage. Readings from this gage were recorded at 120 second intervals to supple-

ment the measurements of the baratron pressure transducer recorded on the data

system.

During the initial entry phase (0 to 1500 sec), the chamber was repressurized

with dry nitrogen to minimize condensation (the shroud still contained liquid

nitrogen). After this time, the nitrogen was augmented with "shop" air in a

best attempt, within facility capabilities and availability of nitrogen, to

achieve the rapid rise to ambient pressure. The same general testing sequence

and procedure was followed for both the hot and cold orbit test conditions.
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Posttest. - After both tests were completed, the test fixture was removed

from the chamber and examined for causes of any discrepancies noted during moni-

toring of the displayed data.

Test Results

The results of the thermal vacuum tests consist of temperature data from

forty-nine thermocouples located on the test fixture and antenna and pressure

data for the vacuum chamber. These data were used to verify that the environ-

ments simulated were representative of orbital and entry flight conditions and

to determine the associated substructural and antenna thermal responses. The

measured thermal responses are compared with analytical results for the same

environments to verify the accuracy of the thermal model.

Temperature simulation. - Temperature measurements obtained from the "con-

trol" thermocouples for the simulation of hot orbit and subsequent entry are

shown in figures 95 and 96 and those for the cold orbit and entry in figures 97

and 98. In general, the deviations from the desired temperature histories are

small and not of major significance. During the entry simulation, the time

dependent distribution was achieved well within acceptable limits. Therefore,

representation of the outer bondllne temperature distribution appears to be

satisfactory.

200.
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FIGURE 95 SIMULATION OF HOT ORBIT
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The degree to which heating symmetry was achieved (i.e., equally heating

areas under lamps on the same controller) is illustrated in figure 99. Temper-

atures of four "control/companion" thermocouple sets (i.e., thermocouples for

the top skin areas heated by lamps on the same controller) are shown and com-

pared for the relatively quiescent environment of hot orbit simulation. Temper-

atures measured by the two symmetrical thermocouple sets (T/C 6 and 3, and T/C

18 and 4) differ by about 8 to ii K (15 to 20°F) which is large in comparison

with the differences of the other two sets. These differences are attributed

to a random deviation in lamp resistances and efficiencies, and/or the type of

circuit by which the two lamp banks were wired to the controller. For the areas

in question, the lamp banks were wired in parallel; surface temperatures deviated

less under lamp banks wired in series.
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This surface heating asymmetry during orbit simulation, however, appears to

have had little influence on substrate temperature distributions. Temperatures

of the structural skin measured by the corresponding sets T/C 15 and 17, and T/C

22 and 25, (figure i00) which are located immediately under the above-mentloned

surface thermocouples (figure 74, i.e., T/C 15 is under T/C 6, etc.), differ by

less than 3 K (5°F). The lack of symmetry was slightly more severe during the

simulation of entry as evidenced by temperature histories from the same two sets

of surface thermocouples (figure i01). These temperatures recorded for the entry

from hot orbit differ by as much as 30 K (55°F). Correspondingly, temperature

differences between the substrate thermocouples also increased as shown in figure

102 but still remained less than 6 K (10°F). Similar asymmetric heating results

were found for the cold orbit and entry simulation. In that case the structural

temperature asymmetry also appears to have been of minor significance. It is

also possible that the differences of structural skin temperatures would have

been affected by heat transfer to the test fixture frame structure discussed

later.
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The uniformity of top surface temperatures for the hot orbit condition is

illustrated in figure 103 which presents the data from all the surface thermo-

couples. As shown, all the data fall within the limits set by the differences

between "control" and "companion" thermocouple measurements (figure 99). The

scatter not attributed to asymmetric heating is well within the thermocouple

tolerance.

Temperatures recorded for the four surface thermocouples, T/C 5, 7, 8 and

9, located within the bounds of the center grid are indicative of the non-uni-

formity of heat transfer within the grid because of the curtain arrangement.

For the hot orbit conditions presented in figure 103, and more graphically during

the following entry simulation (figure 104), the temperatures of the peripheral

thermocouples T/C 5, 7 and 8 are consistently higher than that at the center,

T/C 9. These higher temperatures are attributed to reduced view factors, due to

proximity of the curtains, for radiative losses to the cold vacuum chamber

shroud. This effect is most noticeable in the entry temperature histories (fig-

ure 104) when, after peak temperatures are achieved and radiative cooling pre-

vails, temperatures at the periphery and center diverge. T/C 5 went bad during

the entry simulation, and therefore, is not included in figure 104.
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Temperatures measured on the test-fixture bottom panel, which simulated the

cabin wall boundary, during the two simulated orbital and entry conditions are

shown in figures 105 through 108. For comparison, these figures include a dashed

line representing the constant 307 K (92°F) value for a nominal cabin wall.

Maintaining the nominal cabin wall temperature was difficult because of the

thermal inertia of the three structures involved, i.e., the calrod heaters, test

fixture support plane and cabin wall panel. Some slight excursions from the

design nominal are noted, but overall the desired boundary condition was achieved.
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Pressure simulation. - During orbital simulation, the chamber was maintained

at its minimum pressure. Pressure measurements obtained periodically during

both hot and cold orbital simulations varied from about 4 to 7 mPa (3 x 10-5 to

5 x 10 -5 torr).

Pressure measurements obtained from the direct reading gage and the baratron

during both entry simulations are shown in figures 109 and ii0. Readings from

the gage used for pressure control were manually recorded at 120 sec intervals.

Baratron measurements were recorded on the data acquisition system at I0 sec

intervals, but for data reduction and analyses purposes were tabulated every 40

sec. Included in these two figures, for comparison, is the pressure curve repre-

sentative of the Space Shuttle Orbiter entry history.

For both entry conditions, the measurements from the two instruments corro-

borate each other and show good agreement with the flight history for pressures

less than 27 kPa (200 torr) in the interval 0 to 1700 sec. At the higher pres-

sures, the required mass flow for the desired repressurization rate could not be

supplied by chamber back-fill equipment as configured. However, in this range

the influence of pressure on the pressure dependent thermal conductivity of insu-

lation (e.g., SIP and TG-15000) within the test fixture is essentially negligible.

Therefore, the inability to duplicate the last 200 to 300 sec of the flight pres-

sure history should have little, if any, impact on substrate thermal responses.

Thermal response. - The thermal response of the various test fixture items

was evaluated by considering five groups of similarly located thermocouples.

The respective groups are representative and include most of the thermocouples

on the test fixture and antenna. Those omitted are either within the limits of

the data presented or are not required to show validation of the analytical

thermal model. With the exception noted, the range of temperatures measured

from all the thermocouples within a group is shown rather than the output of the

individual thermocouple. This approach was taken because in most cases the data

points are tightly grouped.
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Figures iii through 114 show the measured substrate thermal responses start-

ing with the outboard and inboard structural skin locations, and then the antenna

flange and elements from the first entry test. For the structural and flange

responses, the data bands show the range of temperature measurements from the

four symmetrically located (same radius) thermocouples (figure 74). An excep-

tion is in figure 112, in which the temperature history from T/C i0 is individual-

ly identified because, except for the very end of the test, it is consistently

lower in magnitude than the other three. For element responses, the data band

includes measurements from all ten thermocouples (T/C 38 through 47) on the five

elements. The narrowness of the band of element temperatures tends to corrobor-

ate analytical estimates of temperature differences of less than one degree.
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The computed responses from three different analytical thermal model con-

figurations are also included in figures iii through 114. The first of these is

the pretest, or flight, calculations obtained along with computation of HRSI

bondline (or top skin) temperatures. This respQnse is represented by the alter-

natively broken curve. At first, the large differences between these calculations

and the measured temperatures, shown for the outboard skin location and antenna

elements, were attributed to minor discrepancies between the thermal model and

test article. This was supported by the reasonable agreement at the inboard skin

location data (figure 112).
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To account for these deviations, the model was slightly altered. Nodes

representing the HRSI tiles and coating were removed and replaced by a layer

representing the 0.254 _ (0.010 in.) thick stainless steel top skin. The layer

of MLI material was replaced with an equal thickness of TG-15000. In this con-

figuration, the measured surface temperatures in the positive X-Y quadrant, the

bottom panel temperature and the chamber pressure were used as inputs to the

thermal model. That is, the time-dependent temperatures of the nodal computation

points were forced to follow the measurements from the themnocouple at the cor-

responding location. Initial temperatures were either obtained directly or infer-

red from measurements. It was noted at this time that other dissimilarities

between model and test article still existed, such as the improvised dust cover

and antenna configuration (e.g., element wall thickness and element support

ring). However, inclusion of these differences into the model would have required

extensive modifications which were considered beyond the scope of this contract.

Subsequent usage of the term "modified thermal model" indicates reference to the

model revisions described above.

Resulting calculations using the modified thermal model are indicated by

the dashed curves in these figures. As shown, these changes had little effect

on the resulting temperatures. However, they tend to validate the adequacy of

the simulated environment to produce valid substrate thermal responses.

After further study, it was then noted that analytical temperatures at the

outboard structural skin locations were higher than at the inboard location.

However, measured temperatures at these two locations are practically identical

as shown in figure 115. This figure shows data from the two (inboard and out-

board) structural thermocouples (T/C 13 and 25) along with that from T/C 21 in

the same -X, +Y quadrant. However, T/C 21 is 2.54 cm (i.0 in.) from the 0.635

cm (0.25 in.) thick fiberglass test fixture frame (figures 69 and 74). From

analytical calculations and practical engineering considerations, thermocouples

located further from the heat sink effect of the antenna should record higher

temperatures. That is, the temperature of T/C 21 should be higher than T/C 25

which should be higher than T/C 13. However, as shown in figure 115, the temper-

atures of T/C 13 and T/C 25 are essentially the same, and that of T/C 21, which

should be the highest temperature, is actually the lowest. This behavior was

taken as an indication of a significant heat leak from the skin/stringer struc-

ture through its supporting aluminum angles (figure 69) to the test fixture

fiberglass side structure.

To account for this effect, calculations were again performed using the

temperature history of T/C 21 for all of the structural skin nodes along the

outboard boundary of the thermal model. The resulting temperature histories

are indicated by the solid curves in figures iii through 114. As expected,

since its nodal point is adjacent to boundary nodes, the largest effect is seen

in the temperature computed for the outboard skin location (T/C 22 through 25)

figure iii. Also, as the distance inward increases, the significance of simu-

lating the edge losses diminishes, but does improve the correlations with measured

temperatures.
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Temperatures measured by the two thermocouples (T/C 26 and 27) at the top

surface of the TG-15000 insulation during the simulation of entry from hot orbit

are shown in figure 116. Included in the figure are the three calculated temper-

ature histories. It can be seen that the modified thermal model with the use of

data from T/C 21 brings the measured and calculated data in much better agreement.

The large differences in temperatures recorded by these two thermocouples are

attributed primarily to the radiation view factors associated with their loca-

tions. Radiative heat transfer for T/C 27 to the backside of the skin/stringer

panel, which is hotter than the antenna, is relatively unobstructed; whereas that

for T/C 26 is significantly reduced due to the presence of the antenna dust cover.

Even without the dust cover, lower temperatures for T/C 26 would be expected since

most of its heat transfer would occur with the relatively cooler antenna. It is

also possible that these temperatures could be influecned by heat transfer from

the backside of the structural skin by a mixed mode of free/forced convection

which could be significant with chamber repressurization, and is not accounted

for in the analytical model. Heat transfer by this mode would also be higher

at the outboard locations due to the larger gap between the structure and insula-

tion, enhancing the development of convective currents.
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Measurements of the SIP and antenna polyimide cover bondline temperature

(T/C 32) were excluded from this and subsequent analyses because the data appear-

ed to be erroneous. Posttest inspection, prompted by irregularities noted during

test monitoring, revealed improper thermocouple installation and bonding of the

removable circular panel over the antenna (see figure 70). A transparent tape

failed to hold the thermocouple junction in contact with the antenna cover sur-

face and consequently the output was considered invalid. The bonding layer of

RTV also appeared exceptionally thick and included numerous voids. These irreg-

ularities in the RTV could have influenced the response of antenna measurements

(figures 113 and 114).

Similar comparisons of measured and calculated temperature responses for

the less dynamic environment of hot orbit simulation are presented in figures

117 through 121. In the same order as before, these figures include the responses

for the outboard and inboard skin locations (figures 117 and 118), the antenna

flange and elements (figures 119 and 120) and the top surface of the insulation

blanket (figure 121). The analytical responses included in these figures are

from the modified thermal model utilizing measured surface temperatures and pres-

sure as input, with and without the use of T/C 21 data as a structural skin

boundary. The magnitude of the deviations from the modified thermal model pre-

dictions are much smaller than those obtained in the entry case. The agreement

is best for the structural skin. The measured temperature rise of the antenna

flange and elements lags the predicted temperature as in the entry case.
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Temperatures measured at the same locations on the structure, antenna and

insulation during the simulation of the cold orbit condition and the subsequent

entry are shown in figures 122 through 126 and 127 through 131, respectively.

Included in these figures are the calculated temperatures from the modified

thermal model with use of T/C 21 data to account for heat transfer to the test

fixture fiberglass sides. The agreement shown between measured and calculated

responses for the relative environment and location further supports the preced-

ing validation of the thermal model.

Discussion. - From the preceding data comparisons it is seen that calculated

temperatures show better agreement with test measurements when the thermal model

accounts for the heat leak to the test fixture side structure. The respective

comparisons of measured and calculated results show that as the test conditions

affecting the test fixture response are incorporated into the analytical thermal

model the agreement between results is improved. In most cases the predictions

are well within experimental tolerances. Where the predicted and measured deviate

the prediction is usually on the conservative side. No matter how rigorous the

design of the test fixture and the simulation of flight environments, it is dif-

ficult to duplicate the flight configuration. Therefore, for validation purposes,

the analytical thermal model should incorporate the flexibility to accommodate any

inconsistencies between flight and test.

One shortcoming of the analytical model illustrated in figure 116 is that

it does not account for such transverse gradients in the insulation material.

From the backside of the skin/stringer panel and bottom of the antenna dust

cover (figures 75 through 77) the model is one-dimensional to the cabin wall

(figure 82, nodes 265 through 276). Hence, the analytical temperature calculated

for this surface is essentially an averaged or integrated value for the radiative

heat transfer. Thus, the calculated temperature history from the modified model
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using the data from T/C 21 is corroborated by falling between the two measured

temperatures arm the clos_ Agreement w_b T/C 27 data based on an averaged area

for heat transfer for each thermocouple.

The influence of the free convection mode of heat transfer may also be con-

sidered for predicting the structural and antenna components. The temperature

histories for entry from a hot orbit (figures iii and 112), for example, indicate

relatively sharp changes in slope when atmospheric pressures are reached during

repressurization. A free convection condition would account, to some extent, for

the structural and antenna temperatures being lower than predicted because cool-

ing would be accelerated. The significance of free convention during entry is

supported by the better agreement of the orbital temperatures (predicted and

measured) which result from radiative heat transfer only.

Of the five locations examined, the agreement between calculated and measured

temperature histories is good or acceptable, except for the antenna elements where

the slope of the measured temperature rise is noticeably less than that calculated

and the magnitude is 8 to 14 K (15 to 25°F) less. This discrepancy is probably

due to the differences between the analytical model and the test antenna. The

test antenna elements had thicker walls and did not contain eccosphere insula-

tion. Of these, the thicker elements walls are the most likely source for the

differences noted. The thicker walls create a larger thermal mass which results

in both a slower temperature rise and a lower maximum temperature. It is also

possible that the thicker, than normal, layer of RTV with the numerous voids

over the antenna could contribute to a lower overall antenna temperature.

The small amount of scatter in the antenna element temperature histories

and the small differences between the antenna flange and element temperature

histories tend to correlate and confirm the analytical trends. Calculated

temperatures for the antenna elements vary by less than one degree overall.

Calculated temperatures for the flange initially lead those for the elements by

6 K (10°F), but then converge and peak out together. Because of small differences

between separate element temperatures it appears that representation of the

antenna in the thermal model could have been less sophisticated.

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY- EAST



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MOC E1478

15 JUNE 1977

VOLUME II

100-

80

A

O

v 60.

1--

40-
w
I.-

20-

0"

0

ii!_̧

!i Ii__

' !tll

10000 20000 30000

ORBIT TIME (SEC)

FIGURE 122 OUTBOARD STRUCTURAL SKIN TEMPERATURES - COLD ORBIT

100"

o

w

80

FIGURE 123

10000 20000 30000

ORBIT TIME (SEC)

INBOARD STRUCTURAL SKIN TEMPERATURES - COLD ORBIT

6-55

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST"



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN
SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MDC E14711
|5 JUNE 1977

VOLUME II

100-

80 _

i 60 L40"

20"

0

_i , _ e !' q ' i I H r ! ! : I I I II = ] !i

? _i_ _ H_!_h'_i]'_/I_I_i_h_Ii]I_I_ihiI_]_[I_]_'!_`_i_h_[Iii_iI_II]"I_I'[_iiII_`_]Ii_I"_]i_I_]i_I_IhIIh_
_I_[_i[_i_ii_H_i_I_=_ii[i_I_]r_]_j[[i_hH_]_i_[[i_[_IiiIh_iI_!h"_[h_i_j_H]_i[_[_[_]jj_i_[_h[I_ii[
IJHi]i!HIi[[ii_[[_iiH_[[_i_Hii_iiH_i_i_ii_[_]_[_[![_i[i_i[[i_[_!!ii[[_i_H[_][Ij_i!_i_iii_I_]_[I_[!_][[

I I I u I _t [l

I,[,il]illl[i[':'_[_iN]],J]i[LU[[j_]iH_HiI_]_]i_i_]][i_][iii_[I_Hi_]h_[I_iiiI_]_]_iH_]Ii_[_[i_i_]_iiii[_
I![!ltiilll]:;I!ii[lttlll_iliiltllllllilltltlllIIIIlllitlllllllli!lllltillll:.lll[iIIEtl'_t I ' '
I!t[ili::l!l':ilii:_!ll]!lll!l_itltillll_tlttl!lllttllllill_,,T,/,,c,,,33,',3_,_ll!l!IltlH_l!
Ilit!lil!il!i_i_[_i_[__T__!___!

i IiitlliitlII_!_I!_!_:_N_i_N_[]]H_]_!_]_i_i[_!hI_]_I_[!_i[_N_i_Ni_

I _1,Ilfl_h_',L_,li,l]!h:l_h_i_`"_[_hI_h_ii_i_i_'I_'h__hh
lii!!l!ltitii Iii:!li!iili[iiliii!li!!ltl_lhl!iiflltltlllttlltil_lll!tlttttlililttllIIIftll!llllllttlllilliilllltttlltttlllt11[',
,,,11 E,, , _, i ,_ E ! , iI , t It 1 Il!il!i]"li,iti! '[!il!iiilii,tliliil!i',iltti,l,'_l!,lli,tll,iil:,_itli,itlli:,t_t I
'J,:, _ i' _........... Ii "i i_ i , ' I i I i t " '['_'l_h::il:'n Tl,:lr'_i' _.'i_,_i_L_`_i_h_h_h__h[i_h

_ [W..i.i_.÷E_{i_i;_.i_._-_!_i_[_11_:_!_[_!!]_!_g_!_]_H_NH_[_]_[_[_i_
ii lAND ALB_ s_K_N_RY_i_[_H_'_]_I__|_:!

_]i_ 7]1;i;i1_];_1_:::I_i]_Jii_,'_l_:_lil'1::lliiil_ii',li;;I _ltlli!il!iiillltilii!!ltiiit_lI!]iit!llil';li_ '

_:if!:,l

7',! = !!!! ! ! ! '. : _!IY !1;! ;'.!: ;i: r!_, _i_ _,_Y : _.111 ,', ', !_ I11 _111 [_ " I, IH I _ ,1!I

ii; : :: ::!::: :!]:iii:ii_i! _!i!_!ir:: :','I! 'I1'i!ii _ii!_i: ii[i,i'i:i_ih h. ,! ;!ilLL] ......... t t1,1 .I l,J=, I=,.I::,LIlt,,fL,tL,I,+,,I,,,,I,,,_IJ,,,[I,,_,,I....

• ............... I i ..... i ' :' ! :! i_' J:' 'I III I :I= _ ;I il;_ ;_:1 I [ rl ' i II 'r i "'
[_:_t_l : ]::]:i_i]:!i!lfli!;!Lii]2_i]J,&JL,,ili:i[L::_l_,!]!,i,ll,iiiil!_ll_...lhl[llj[[jiHtJ_ilH;i

I0000 20000 30000

ORBIT TIME (SEC)

FIGURE 124 ANTENNA FLANGE TEMPERATURES - COLD ORBIT

I00"

_0'

A

i 60-
40-

20-

0 m

0

i
I0000 20000 30000

ORBIT TIME (SEC)

FIGURE 125 ANTENNA ELEMENT TEMPERATURES - COLD ORBIT

V.

A.

6-56

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY- EAIIT



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MDC E1478
15 JUNE 1977

VOLUME II

160"

,oo 
...... r ........

80"

60-

i 40-

20 - i._

o
o

FIGURE 126

1oooo 20000

ORBIT TIME (SEC)

INSULATION TEMPERATURES - COLD ORBIT

30000

o

140"

120

lO0'

60

T/C 22-25

40

FIGURE 127

1000 2000 3000

ENTRY TIME (SEC)

OUTBOARD STRUCTURAL SKIN TEMPERATURES -

4000 5,O0

ENTRY FROM COLD ORBIT

6-57

MC _OI_I_IELL I)OUGLAS As'r_oI_IAI.ITICS COMImA._IV - E_ B T



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORTMIDCE1478
15JUNE 1977

VOLUMEII

160.

140'

120'

100'

20

'j

0 1000 2000 3000 4000

ENTRYTIME (SEC)

5000

FIGURE 128 INBOARD STRUCTURAL SKIN TEMPERATURES - ENTRY FROM COLD ORBIT

6-58

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY- EABT



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MDCF_1478
15 JUNE1977

VOLUMEII

160"

140

120

100'

20

o 1ooo zooo 3000 4000 sooo

ENTRY TIME (SEC)

FIGURE 129 ANTENNA FLANGE TEMPERATURES - ENTRY FROM COLD ORBIT

6-59

I_CDO_I_IELL DOUGLAS AST"RO_AUT#CS COMPA._V " E_'BT



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MDCE1478
15JUNE 1977

VOLUMEII

140"

120"

o
v

I--

Lt,-
w

100"

20

0 1000 2000 3000 4000 5000

ENTRY TIME (SEC)

FIGURE 130 ANTENNA ELEMENT TEMPERATURES - ENTRY FROM COLD ORBIT

6-60

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN
SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MDC E1478

15 JUNE 1977

VOLUME II

140-

120"

100.

!

20,

W.

0 I000 2000 3000 4000 5000

ENTRY TIME (SEC)

FIGURE 131 INSULATION TEMPERATURES - ENTRY FROM COLD ORBIT

6-61

MCDONNELL DOUGLAS ASTROItlAUTICS COMPANY - EA|T



I.

_dk

_._



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MOC E)478
15 JUNE 1977

VOLUME II

1.

3.

REFERENCES

Kuhlman, E. A., "Development of S-band Antenna Interface Design," NAS 9-14722,

McDonnell Douglas Astronautics Company-East, Volume I, Final Report,
MDC E0896, April 1976.

Kuhlnlan, E. A., "High Temperature Antenna Development for Space Shuttle,"

NAS 9-13304, McDonnell Douglas Astronautics Company-East, Volume I, Final

Report, MDC E0896, July 1973.

Kuhlman, E. A., "High Temperature Antenna Development for Space Shuttle,"

NAS 9-13004, McDonnell Douglas Astronautics Company-East, Volume II,

Final Report, MI)C E0896, April 1974.

7-I

MCDONNELL DOUGLAS ASTROI_IAUTICS COMPANY - £Al'r



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MOC E1475

15 JUNE 1977

VOLUME II

THIS PAGE INTENTIONALLY LEFT BLANK

A

7-2

MCDONNELL DOUGLAS AJTROItlAUTICII COMPANV" EAST



DEVELOPMENT OF S-BAND ANTENNA INTERFACE DESIGN

SHUTTLE ANTENNA RADOME TECHNOLOGY TEST PROGRAM

REPORT MOC E14711,
15 JUNE 1977

VOLUME II

APPENDIX A

REFERENCE RADIATION PATTERNS IN RECTANGULAR COORDINATES

The radiation patterns in rectangular coordinates given in this appendix

correspond to the radiation patterns in polar coordinates given in figures 39,

40 and 41 of the text. These patterns were used as the reference or baseline

data for analyzing the patterns after each thermal test.
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APPENDIX B

RADIATION PATTERNS IN RECTANGULAR COORDINATES FOR TEST 4

The radiation patterns in rectangular coordinates given in this appendix

correspond to the radiation patterns in polar coordinates given in figures 42,

43 and 44. These patterns are from Test 4 but are typical of those obtained for

the other tests.
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FIGURE 141 RADIATION PATTERNS FOR TEST 4 - 2.1 GHz (CONT)
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