19 research outputs found

    Sustainable cloud service provider development by a Z-number-based DNMA method with Gini-coefficient-based weight determination

    Get PDF
    The sustainable development of cloud service providers (CSPs) is a significant multiple criteria decision making (MCDM) problem, involving the intrinsic relations among multiple alternatives, (quantitative and qualitative) decision criteria and decision-experts for the selection of trustworthy CSPs. Most existing MCDM methods for CSP selection incorporated only one normalization technique in benefit and cost criteria, which would mislead the decision results and limit the applications of these methods. In addition, these methods did not consider the reliability of information given by decision-makers. Given these research gaps, this study introduces a Z-number-based double normalization-based multiple aggregation (DNMA) method to tackle quantitative and qualitative criteria in forms of benefit, cost, and target types for sustainable CSP development. We extend the original DNMA method to the Z-number environment to handle the uncertain and unreliability information of decision-makers. To make trade-offs between normalized criteria values, we develop a Gini-coefficient based weighting method to replace the mean-square-based weighting method used in the original DNMA method to enhance the applicability and isotonicity of the DNMA method. A case study is conducted to demonstrate the effectiveness of the proposed method. Furthermore, comparative analysis and sensitivity analysis are implemented to test the stability and applicability of the proposed method.info:eu-repo/semantics/publishedVersio

    Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifier for Prxs

    No full text
    Peroxiredoxins (Prxs) are a protein superfamily, present in all organisms, that play a critical role in protecting cellular macromolecules from oxidative damage but also regulate intracellular and intercellular signaling processes involving redox-regulated proteins and pathways. Bioinformatic approaches using computational tools that focus on active site-proximal sequence fragments (known as active site signatures) and iterative clustering and searching methods (referred to as TuLIP and MISST) have recently enabled the recognition of over 38,000 peroxiredoxins, as well as their classification into six functionally relevant groups. With these data providing so many examples of Prxs in each class, machine learning approaches offer an opportunity to extract additional information about features characteristic of these protein groups. In this study, we developed a novel computational method named “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated with K-space amino acid pairs enabled the detection of class-specific conserved sequences outside the known functional centers and with potential importance. For example, drugs designed to target Prx proteins would likely suffer from cross-reactivity among distinct Prxs if targeted to conserved active sites, but this may be avoidable if remote, class-specific regions could be targeted instead

    FEPS: A Tool for Feature Extraction from Protein Sequence

    No full text
    Machine learning has become one of the most popular choices for developing computational approaches in protein structural bioinformatics. The ability to extract features from protein sequence/structure often becomes one of the crucial steps for the development of machine learning-based approaches. Over the years, various sequence, structural, and physicochemical descriptors have been developed for proteins and these descriptors have been used to predict/solve various bioinformatics problems. Hence, several feature extraction tools have been developed over the years to help researchers to generate numeric features from protein sequences. Most of these tools have some limitations regarding the number of sequences they can handle and the subsequent preprocessing that is required for the generated features before they can be fed to machine learning methods. Here, we present Feature Extraction from Protein Sequences (FEPS), a toolkit for feature extraction. FEPS is a versatile software package for generating various descriptors from protein sequences and can handle several sequences: the number of which is limited only by the computational resources. In addition, the features extracted from FEPS do not require subsequent processing and are ready to be fed to the machine learning techniques as it provides various output formats as well as the ability to concatenate these generated features. FEPS is made freely available via an online web server as well as a stand-alone toolkit. FEPS, a comprehensive toolkit for feature extraction, will help spur the development of machine learning-based models for various bioinformatics problems

    A Privacy Preserving Authentication Scheme for Roaming in IoT-Based Wireless Mobile Networks

    No full text
    The roaming service enables a remote user to get desired services, while roaming in a foreign network through the help of his home network. The authentication is a pre-requisite for secure communication between a foreign network and the roaming user, which enables the user to share a secret key with foreign network for subsequent private communication of data. Sharing a secret key is a tedious task due to underneath open and insecure channel. Recently, a number of such schemes have been proposed to provide authentication between roaming user and the foreign networks. Very recently, Lu et al. claimed that the seminal Gopi-Hwang scheme fails to resist a session-specific temporary information leakage attack. Lu et al. then proposed an improved scheme based on Elliptic Curve Cryptography (ECC) for roaming user. However, contrary to their claim, the paper provides an in-depth cryptanalysis of Lu et al.’s scheme to show the weaknesses of their scheme against Stolen Verifier and Traceability attacks. Moreover, the analysis also affirms that the scheme of Lu et al. entails incorrect login and authentication phases and is prone to scalability issues. An improved scheme is then proposed. The scheme not only overcomes the weaknesses Lu et al.’s scheme but also incurs low computation time. The security of the scheme is analyzed through formal and informal methods; moreover, the automated tool ProVerif also verifies the security features claimed by the proposed scheme
    corecore