4,280 research outputs found

    Dispersal and Re-Capture of Marked, Overwintering \u3ci\u3eTomicus Piniperda\u3c/i\u3e (Coleoptera: Scolytidae) From Scotch Pine Bolts

    Get PDF
    The pine shoot beetle (PSB), Tomicus piniperda is a recently established exotic pest of live pine in the southern Great Lakes of the U.S. and Canada. Scotch pine, Pinus sylvestris L. is the most susceptible pine species, but the adult also attacks several other North American species of Pinus. This research investigated the dispersal behavior of beetles emerging from overwintering sites to aid in the development of effective monitoring and management practices. Scotch pine logs with overwintering PSB were sprayed with fluorescent pigments to mark dispersing beetles. These logs were placed in piles in the centers of three circular trap arrays of 8-unit Lindgren traps, baited with a-pinene, and placed at distances of 50, 100,200, 300 and 400 meters from the center along equally spaced radii. An estimated average of 393 PSB, or 23.4% of the overwintering PSB, dispersed from each of three log piles during the initial spring dispersal flight, and 21.9% of these were captured in traps. Traps within 100 meters caught 56.0 to 67.8% of the marked PSB recovered. Most (95.3%) marked PSB were trapped within 400 meters, but 12 beetles (4.7%) were trapped 780-2,000 meters away in adjacent trap arrays. The dispersal pattern of the population, as indicated by trap catch, was to the northeast, in the direction of prevailing westerly/ southerly winds up to 4.77 mls daily average during beetle flight. Regression analysis suggests that the PSB within the experimental area had a predicted dispersal distance of 900 meters in an area that contained numerous traps. Dispersal distances may be greater under of conditions of strong and steady winds or iftraps or abundant host material removed fewer PSB from the dispersing population. The use of traps to monitor specific sites should consider the direction of prevailing winds. Trap catches of wild PSB suggest that optimal inter-trap spacing for efficient detection could be about 78 m

    Secret-Sharing for NP

    Get PDF
    A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any "unqualified" subset of parties cannot efficiently learn anything about the secret. The collection of "qualified" subsets is defined by a Boolean function. It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be "qualified" and provide a witness attesting to this fact. Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction. One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP

    Dynamical vs. Auxiliary Fields in Gravitational Waves around a Black Hole

    Full text link
    The auxiliary/dynamic decoupling method of hep-th/0609001 applies to perturbations of any co-homogeneity 1 background (such as a spherically symmetric space-time or a homogeneous cosmology). Here it is applied to compute the perturbations around a Schwarzschild black hole in an arbitrary dimension. The method provides a clear insight for the existence of master equations. The computation is straightforward, coincides with previous results of Regge-Wheeler, Zerilli and Kodama-Ishibashi but does not require any ingenuity in either the definition of variables or in fixing the gauge. We note that the method's emergent master fields are canonically conjugate to the standard ones. In addition, our action approach yields the auxiliary sectors.Comment: 26 page

    Chromatin remodeling — a novel strategy to control excessive alcohol drinking

    Get PDF
    Harmful excessive use of alcohol has a severe impact on society and it remains one of the major causes of morbidity and mortality in the population. However, mechanisms that underlie excessive alcohol consumption are still poorly understood, and thus available medications for alcohol use disorders are limited. Here, we report that changing the level of chromatin condensation by affecting DNA methylation or histone acetylation limits excessive alcohol drinking and seeking behaviors in rodents. Specifically, we show that decreasing DNA methylation by inhibiting the activity of DNA methyltransferase (DNMT) with systemic administration of the FDA-approved drug, 5-azacitidine (5-AzaC) prevents excessive alcohol use in mice. Similarly, we find that increasing histone acetylation via systemic treatment with several histone deacetylase (HDAC) inhibitors reduces mice binge-like alcohol drinking. We further report that systemic administration of the FDA-approved HDAC inhibitor, SAHA, inhibits the motivation of rats to seek alcohol. Importantly, the actions of both DNMT and HDAC inhibitors are specific for alcohol, as no changes in saccharin or sucrose intake were observed. In line with these behavioral findings, we demonstrate that excessive alcohol drinking increases DNMT1 levels and reduces histone H4 acetylation in the nucleus accumbens (NAc) of rodents. Together, our findings illustrate that DNA methylation and histone acetylation control the level of excessive alcohol drinking and seeking behaviors in preclinical rodent models. Our study therefore highlights the possibility that DNMT and HDAC inhibitors can be used to treat harmful alcohol abuse

    Reduction of quantum noise in optical interferometers using squeezed light

    Full text link
    We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise a squeezed vacuum state is injected into the usually unused input port. Here, we specifically investigate the so called `dark port case', when the beam splitter is oriented close to 90{\deg} to the incoming laser beam, such that nearly all photons go to one output port of the interferometer, and only a small fraction of photons is seen in the other port (`dark port'). For this case it had been suggested that signal amplification is possible without concurrent noise amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show that by injection of a squeezed vacuum state into the second input port, counting noise is reduced for large values of the squeezing factor, however the signal is not amplified. Signal strength only depends on the intensity of the laser beam.Comment: 8 pages, 1 figur

    Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains

    Get PDF
    Acidic activation domains are intrinsically disordered regions of the transcription factors that bind coactivators. The intrinsic disorder and low evolutionary conservation of activation domains have made it difficult to identify the sequence features that control activity. To address this problem, we designed thousands of variants in seven acidic activation domains and measured their activities with a high-throughput assay in human cell culture. We found that strong activation domain activity requires a balance between the number of acidic residues and aromatic and leucine residues. These findings motivated a predictor of acidic activation domains that scans the human proteome for clusters of aromatic and leucine residues embedded in regions of high acidity. This predictor identifies known activation domains and accurately predicts previously unidentified ones. Our results support a flexible acidic exposure model of activation domains in which the acidic residues solubilize hydrophobic motifs so that they can interact with coactivators. A record of this paper\u27s transparent peer review process is included in the supplemental information

    Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/β-arrestin complex

    Get PDF
    Internalization of β-adrenergic receptors (βARs) occurs by the sequential binding of β-arrestin, the clathrin adaptor AP-2, and clathrin. D-3 phosphoinositides, generated by the action of phosphoinositide 3-kinase (PI3K) may regulate the endocytic process; however, the precise molecular mechanism is unknown. Here we demonstrate that βARKinase1 directly interacts with the PIK domain of PI3K to form a cytosolic complex. Overexpression of the PIK domain displaces endogenous PI3K from βARK1 and prevents βARK1-mediated translocation of PI3K to activated β2ARs. Furthermore, disruption of the βARK1/PI3K interaction inhibits agonist-stimulated AP-2 adaptor protein recruitment to the β2AR and receptor endocytosis without affecting the internalization of other clathrin dependent processes such as internalization of the transferrin receptor. In contrast, AP-2 recruitment is enhanced in the presence of D-3 phospholipids, and receptor internalization is blocked in presence of the specific phosphatidylinositol-3,4,5-trisphosphate lipid phosphatase PTEN. These findings provide a molecular mechanism for the agonist-dependent recruitment of PI3K to βARs, and support a role for the localized generation of D-3 phosphoinositides in regulating the recruitment of the receptor/cargo to clathrin-coated pits

    Order from disorder in lattice QCD at high density

    Full text link
    We investigate the properties of the ground state of strong coupling lattice QCD at finite density. Our starting point is the effective Hamiltonian for color singlet objects, which looks at lowest order as an antiferromagnet, and describes meson physics with a fixed baryon number background. We concentrate on uniform baryon number backgrounds (with the same baryon number on all sites), for which the ground state was extracted in an earlier work, and calculate the dispersion relations of the excitations. Two types of Goldstone boson emerge. The first, antiferromagnetic spin waves, obey a linear dispersion relation. The others, ferromagnetic magnons, have energies that are quadratic in their momentum. These energies emerge only when fluctuations around the large-N_c ground state are taken into account, along the lines of ``order from disorder'' in frustrated magnetic systems. Unlike other spectrum calculations in order from disorder, we employ the Euclidean path integral. For comparison, we also present a Hamiltonian calculation using a generalized Holstein-Primakoff transformation. The latter can only be constructed for a subset of the cases we consider.Comment: 24 pages, 6 figures, 1 tabl

    Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms

    Get PDF
    Activation energy for the decomposition of explosives is a crucial parameter of performance. The dramatic suppression of activation energy in condensed phase decomposition of nitroaromatic explosives has been an unresolved issue for over a decade. We rationalize the reduction in activation energy as a result of a mechanistic change from unimolecular decomposition in the gas phase to a series of radical bimolecular reactions in the condensed phase. This is in contrast to other classes of explosives, such as nitramines and nitrate esters, whose decomposition proceeds via unimolecular reactions both in the gas and in the condensed phase. The thermal decomposition of a model nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT), is presented as a prime example. Electronic structure and reactive molecular dynamics (ReaxFF-lg) calculations enable to directly probe the condensed phase chemistry under extreme conditions of temperature and pressure, identifying the key bimolecular radical reactions responsible for the low activation route. This study elucidates the origin of the difference between the activation energies in the gas phase (∼62 kcal/mol) and the condensed phase (∼35 kcal/mol) of TNT and identifies the corresponding universal principle. On the basis of these findings, the different reactivities of nitro-based organic explosives are rationalized as an interplay between uni- and bimolecular processes

    Matched Asymptotic Expansion for Caged Black Holes - Regularization of the Post-Newtonian Order

    Full text link
    The "dialogue of multipoles" matched asymptotic expansion for small black holes in the presence of compact dimensions is extended to the Post-Newtonian order for arbitrary dimensions. Divergences are identified and are regularized through the matching constants, a method valid to all orders and known as Hadamard's partie finie. It is closely related to "subtraction of self-interaction" and shows similarities with the regularization of quantum field theories. The black hole's mass and tension (and the "black hole Archimedes effect") are obtained explicitly at this order, and a Newtonian derivation for the leading term in the tension is demonstrated. Implications for the phase diagram are analyzed, finding agreement with numerical results and extrapolation shows hints for Sorkin's critical dimension - a dimension where the transition turns second order.Comment: 28 pages, 5 figures. v2:published versio
    • …
    corecore