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SUMMARY

Acidic activation domains are intrinsically disordered regions of the transcription factors that bind coactiva-
tors. The intrinsic disorder and low evolutionary conservation of activation domains have made it difficult to
identify the sequence features that control activity. To address this problem, we designed thousands of var-
iants in seven acidic activation domains andmeasured their activities with a high-throughput assay in human
cell culture. We found that strong activation domain activity requires a balance between the number of acidic
residues and aromatic and leucine residues. These findings motivated a predictor of acidic activation do-
mains that scans the human proteome for clusters of aromatic and leucine residues embedded in regions
of high acidity. This predictor identifies known activation domains and accurately predicts previously uniden-
tified ones. Our results support a flexible acidic exposure model of activation domains in which the acidic
residues solubilize hydrophobic motifs so that they can interact with coactivators. A record of this paper’s
transparent peer review process is included in the supplemental information.

INTRODUCTION

Transcription factors (TFs) activate gene expression using DNA

binding domains (DBDs) and activation domains (ADs). DBDs

are structured, evolutionarily conserved, and bind related DNA

sequences (Latchman, 2008). ADs are intrinsically disordered,

poorly conserved, and bind structurally diverse coactivator sub-

units (Dyson and Wright, 2016). Bioinformatics tools can predict

the DBDs from protein sequence, but there are few tools for pre-

dicting ADs (El-Gebali et al., 2019; Finn et al., 2016). When a new

genome is sequenced, scanning for DBDs can predict candidate

TFs, but it is not possible to predict which candidate TFs

contain ADs.

Predicting ADs from amino acid sequences has been difficult

for five reasons: (1) ADs have diverse primary sequences (Latch-

man, 2008), (2) ADs have poor sequence conservation that hin-

ders comparative genomics, (3) ADs are intrinsically disordered

and have diverse modes of binding coactivators (Dyson and

Wright, 2016), (4) until recently, measuring AD activity has been

low throughput, and (5) the key sequence properties that control

AD activity remain unresolved. Many ADs are acidic (have a net

negative charge), but site-directed mutagenesis has shown that

clusters of hydrophobic residues, called motifs, make the largest

contributions to activity (Cress and Triezenberg, 1991; Dyson

andWright, 2016;Warfield et al., 2014). Here, we test the hypoth-

esis that ADs are composed of hydrophobic motifs surrounded

by an acidic context.

Based on our work on yeast (Staller et al., 2018), we devel-

oped an acidic exposure model for AD function: acidity and

intrinsic disorder keep hydrophobic motifs exposed to solvent

where they are available to bind coactivators (Figure 1A). Hy-

drophobic residues tend to interact with each other and drive

intramolecular chain collapse, suppressing interactions with co-

activators. Surrounding the hydrophobic residues with acidic

residues that repel one another exposes the motifs to solvent,

promoting interactions with coactivators. For example, in the

VP16 AD, the critical F442 is highly exposed to solvent in solu-

tion, but exposure decreases upon coactivator binding (Shen

et al., 1996a, 1996b). Three recent studies on yeast (Erijman

et al., 2020; Ravarani et al., 2018; Sanborn et al., 2021) also

found that strong ADs contain both acidic and hydrophobic res-

idues, which supports the acidic exposure model. However,

whether this model can explain the properties of human ADs re-

mains unknown.

334 Cell Systems 13, 334–345, April 20, 2022 ª 2022 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Here, we show that the acidic exposure model extends from

yeast to human cells. We introduce a high-throughput reporter

system to test more than 3,500 variants in seven ADs. We de-

signed these variants to interrogate two aspects of the acidic

exposure model—acidic residues and aromatic residues. We

found that strong ADs balance the number of acidic residues

against the number of aromatic and leucine residues. Based

on these results, we found that scanning the proteome for clus-

ters of eight amino acids (acidic, basic, aromatic, and leucine

residues) was sufficient to accurately predict new and known

ADs. Taken together, our results suggest that the acidic expo-

sure model may be a general explanation for the function of

the eukaryotic ADs, from those in yeast to those in humans,

and provide a framework for unifying the roles of acidity, hydro-

phobicity, and intrinsic disorder in acidic ADs.

RESULTS

To test the acidic exposure model, we developed a high-

throughput method to assay the AD variants in parallel in human

cell culture (Figure 1B). We engineered a cell culture system with

a synthetic TF that binds and activates a genome-integrated

GFP reporter. Each cell receives one AD variant marked by a

unique DNA barcode integrated into the same genomic ‘‘landing

pad’’ with Cre recombinase and asymmetric loxP sites. The

landing pad equalizes the effects of genomic position on expres-

sion (Maricque et al., 2018). The synthetic TF contains anmScar-

let red fluorescent protein for measuring abundance, but after

trying four different red fluorescent proteins, each with low

signal, we did not normalize for protein abundance in this study.

To avoid cell toxicity, the synthetic TF contains an engineered

DBD (Park et al., 2019) and an estrogen response domain for

inducible nuclear localization (McIsaac et al., 2013). AD variants

that drive different levels of GFP expression are separated by

fluorescent activated cell sorting (FACS), and the barcodes in

each sorted pool are counted by deep sequencing (Kinney

et al., 2010; Sharon et al., 2012; Staller et al., 2018). We used

the barcode counts to compute a probability mass function for

each AD across the four pools and the GFP signal of each pool

to compute a weighted average GFP signal. The assay is

Figure 1. A high-throughput assay for measuring the activities of AD variants in parallel
(A) In the acidic exposure model, ADs fluctuate between collapsed and exposed states. Exposed ADs can bind coactivators and partially fold.

(B) The high-throughput AD assay uses a synthetic DNA binding domain (DBD), an estrogen response domain (ERD), a GFP reporter, FACS, and barcode

sequencing. The reporter is integrated at the AAVS1 locus.

(C) We designed mutations that varied the net charge or the number of aromatic residues. We designed a small set of supercharge variants to vary both

properties.

(D) Histograms of the number of mutations in each variant. Most variants had 5 or fewer substitutions.
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reproducible (average Pearson correlation between replicates of

0.69) and recapitulates the activity of known mutations in human

ADs (Figure S1). A synthetic TF without an AD (No AD control)

was used to define baseline activity in our assay. In the library,

the ADs are cloned into the N terminus of the synthetic TF, be-

tween the ATG start codon (M) and a GSGS linker. In the No

AD control plasmid, nothing is between the initial M and the

GSGS linker. We combined biological replicates by normalizing

the activity of the No AD control to 2,000 (arbitrary fluorescence

units, AU, STAR Methods) and averaging the fluorescence

values together.

In our first experiment, we performed deep mutational scans

(DMS, where every position is mutated to all 19 other residues)

and rational mutagenesis on the two ADs of the tumor suppres-

sor TF, p53. This library contained 2,991 variants, each paired

with 5 barcodes. After an extensive analysis, we determined

that most point substitutions had small effects on activity and

that five barcodes were not sufficient to resolve these small

changes in activity. DMS have been very informative for struc-

tured proteins (Gray et al., 2017) but not for intrinsically disor-

dered regions, where most point substitutions do not cause

measurable changes in activity (Giacomelli et al., 2018; Majithia

et al., 2016). In the rational mutagenesis, we introduced multiple

substitutions to test the roles of acidic residues, aromatic resi-

dues, and intrinsic disorder. These perturbations had large

effects on activity that could be resolved with five barcodes (Fig-

ures S1 and S2).

In our second experiment, we examined 525 rationally de-

signed variants of five ADs, each tagged with twenty-eight barc-

odes. Using more barcodes allowed us to resolve smaller

changes in activity, and assaying mutations with larger effect

sizes increased the measurement reproducibility (Figure S1).

We focused the main text on these high-quality data and used

the noisier p53 data to corroborate trends.

Using this assay, we investigated three key features of acidic

ADs—acidic residues, hydrophobic motifs, and disorder-to-or-

der transitions (Figure 1C). We designed sequence variants

that systematically added and subtracted acidic residues or ar-

omatic residues in seven ADs—VP16 (H1 region, 415–453), Hif1ɑ
(AD2, 781–896), CITED2 (220–258), Stat3 (719–764), p65 (AD2,

521–551), p53 AD1 (1–40), and p53 AD2 (40–60) (Berlow et al.,

2017; Brady et al., 2011; Lecoq et al., 2017; Raj and Attardi,

2017; Regier et al., 1993; Vogel et al., 2015; Wojciak et al.,

2009). Most variants had five or fewer substitutions (Figure 1D).

For each AD, we hand-designed 6–10 ‘‘supercharge’’ variants

that added aromatic residues next to the existing acidic residues

and acidic residues next to the existing aromatic residues. For

each disordered region that folds into an alpha helix upon coac-

tivator binding, we introduced proline or glycine residues to

break the helices (Figure S3). The complete list of substitutions

and activities are located in Data S1 (VP16, Hif1ɑ, CITED2,

Stat3, p65. 525 variants, 28 barcodes per variant, and 4 repli-

cates) and Data S2 (p53 AD1, p53 AD2. 2,991 variants, 5 barco-

des per variant, and 3 replicates). Note that the activity values in

the two experiments are not comparable because they were

collected on different cell sorters and normalized differently.

Compared with the No AD control, all ADs activated the GFP

reporter (Figures 2 and S2). For each AD, we identified variants

that significantly changed activity after correction for multiple hy-

potheses (two-sided t test and 5% FDR, Dataset 1). For VP16,

CITED2, and Hif1ɑ, we recovered variants that increased or

decreased their activities (Dataset 1; Figure 2A). p65 and Stat3

were weakly active in the assay, reducing our sensitivity, and

none of these variants significantly changed activity after correc-

tion for multiple hypotheses (Dataset 1). Either our assay was not

sensitive enough to interrogate these two ADs or the residues we

mutated made small contributions to activity.

Hydrophobic motifs are necessary for AD activity
We confirmed that hydrophobic motifs make large contributions

to AD activity. We included published motifs (LPEL in CITED2,

LPQL and LLxxL in Hif1ɑ, and LxxFxL in VP16 [Berlow et al.,

2017; Freedman et al., 2003; Regier et al., 1993]) and predicted

additional motifs by looking for clusters of W,F,Y,L,M residues.

Substituting all the residues that comprise a motif with alanine

residues decreased activity (Figures 2B and S2). In CITED2 and

VP16, every cluster of the tested aromatic and leucine residues

contributed to activity.

Acidic residues are necessary for AD activity
We systematically increased and decreased the net negative

charge of each AD and plotted the resulting activities (Figures

3A and S2). For CITED2, Hif1ɑ, VP15, p53 AD1, and p53 AD2,

acidic residues were necessary for full activity, and the regres-

sion of activity against net charge had significant negative slopes

(Figures 3A, S2C, and S4A). For CITED2, Hif1ɑ, and VP16, slopes

were significant when using the charge variants or all variants.

Removing negatively charged residues (D and E) had effects

similar to that of adding positively charged (K and R) residues

and vice versa (Figure S5), suggesting that net charge and not

residue identity is the key parameter.

For ADs with moderate acidity (CITED2, Hif1ɑ, and p53 AD1),

adding acidic residues increased activity in most variants (Fig-

ure 3A). For p53 AD1, this effect mirrors how phosphorylation in-

creases activity (Raj and Attardi, 2017). For the more acidic p53

AD2, adding acidic residues rarely increased activity; for the

most acidic AD, VP16, adding acidic residues never increased

activity. Thus, the starting net charge of the wild-type AD deter-

mined whether it was possible to increase activity by adding

acidic residues.

For CITED2 and Hif1ɑ, adding acidic residues could either in-

crease or decrease activity (Figure 3A: red versus blue) depend-

ing on the location of the substitution (Figure 3B). For CITED2,

the variants with increased activity (Figure 3A, red) frequently

added acidic residues in the flanks, near the hydrophobic motifs

(Figures 3B and 3C, red), whereas the variants with decreased

activity frequently removed the positive residues in the center

of the AD (Figures 3B and 3C, blue). For Hif1ɑ, the variants

with increased activity were more likely to add acidic residues

in the C terminus near L812, L813, or L819 or to remove R820.

These data suggest that the location of the added acidic resi-

dues can determine how they modulate activity. This result

agrees with our work in yeast and two random peptide screens

that found that [DE][WFY] dipeptides make large contributions

to AD activity (Erijman et al., 2020; Ravarani et al., 2018; Staller

et al., 2018). To further test this idea, we used theOmega statistic

to quantify how the mixture of aromatic and leucine (W,F,Y,L)

residues with acidic residues (D,E) is related to activity (Martin

ll
OPEN ACCESS Article

336 Cell Systems 13, 334–345, April 20, 2022



et al., 2016). We found a modest correlation: variants with more

evenly mixed W,F,Y, L and D,E (i.e., low Omega values) had

higher activities (Figure S4D). Together with the literature, our

data support the idea that the acidic residues near key hydro-

phobicmotifs boost activity. For VP16, we could not increase ac-

tivity by adding acidic residues, perhaps because 5/7 residues in

the motifs are already adjacent to acidic residues. VP16 is the

most acidic AD we examined and appears to be saturated for

the effect of negative charge on activity.

Context-dependent effects of adding acidic or aromatic
residues
When we systematically added and removed aromatic residues,

we saw expected and unexpected changes in AD activity. Based

on experiments in human cell culture with the VP16, p53, and ETS

Variant transcription factor (ETV) family of ADs, we expected aro-

matic residues to be critical for activity and that adding aromatic

residues would increase activity (Currie et al., 2017; Raj and At-

tardi, 2017; Regier et al., 1993). The VP16 variants generally

matched this expectation: any substitution in F442 (A,L,W,Y)

decreased activity. Furthermore, adding up to four aromatic res-

idues increased activity in most cases (Figures 2B, 4A, and S6C).

Similarly, for both p53 ADs, removing aromatics decreased activ-

ity and adding aromatic residues increased activity (Figure S2D).

However, in CITED2, adding and removing aromatic residues

did not yield the expected results.Mutating the aromatic residues

to alanine led to small decreases in activity, and mutating the ar-

omatic residues to leucine residues caused small increases in

Figure 2. Rationally designed variants increase and decrease AD activity

(A) Histograms of the activities of all variants (n = 525, blue) and variants of each AD (orange) are shown. On the x axis, activity is the calculated GFP fluorescence

(arbitrary units, AU). On the y axis, density is the normalized counts of variants in each bin of activity. Biological replicates were normalized so that the No AD

control had an activity of 2,000 and then averaged together. The vertical black line indicates the activity of the No AD control. For each WT AD, the mean and

standard deviation across the four replicates are shown.

(B) The effects of mutating hydrophobic motifs to alanine or glycine residues are shown. For VP16, the effects of substituting aromatic residues with alanine or

leucine. For each panel, the thick line is themean activity of theWTAD and the shaded box is the standard deviation. Colors match (A). *, p < 0.05, two-sided t test

with 5% FDR correction.

(C) Motif locations and alpha helices (arrows).
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activity (Figures 4A and S6A). Adding aromatic residues

decreased activity for all but one variant. If, instead, weplot activ-

ity against the number ofW,F,Y,L residues,CITED2activity peaks

at the WT number, 10 (Figures 4B and S4C).

In Hif1ɑ, adding or removing aromatic residues generally did

not change activity. Mutating the lone Y to L caused a small,

and not significant, increase in activity. Adding aromatic residues

to Hif1ɑ caused small, and frequently not significant, decreases

in activity (Figures S4B and S6B).

We saw two responses to adding acidic residues and two re-

sponses to adding aromatic residues. For the moderately acidic

ADs, CITED2 and Hif1ɑ, we could increase activity by adding

acidic residues and for CITED2, decrease activity by adding ar-

omatic residues. For the more acidic ADs, VP16 and p53 AD2,

we could increase activity by adding aromatic residues but not

by adding acidic residues. Even for VP16, addingmore than 4 ar-

omatic residues always decreased activity, suggesting that for

all ADs, there is a regime where adding aromatic residues will

eventually decrease activity.

The acidic exposure model can explain why the responses to

adding acidic residues mirror the opposite responses to adding

aromatic residues. The model predicts that adding acidic resi-

dues will increase AD activity only when there are hydrophobic

motifs that can be further exposed. Once the hydrophobic motifs

Figure 3. Introducing acidic residues near hydrophobic motifs increases AD activity

(A) For variants designed to perturb net charge, the mean activities (AU) are plotted along with a linear regression (ordinary least squares). Gray error bars are the

standard deviation. Variants with lower net charge and increased activity are colored red; variants with lower net charge and decreased activity are colored blue.

The black line is the WT mean and the gray box is the WT standard deviation. Individual points are shown in Figure S4.

(B) The sequences of the red and blue points in (A) are shown, with substitutions highlighted. The WT sequence is in black.

(C) For the red and blue sets of variants, the fraction of variants with a substitution at each position is plotted (normalized sum of the columns in B). For CITED2,

adding acidic residues in the flanks increased activity. For Hif1ɑ, the red variants frequently removed R820 or add acidic residues near L812, L813 or L819. For

Hif1ɑ, adding E’s often increased activity. We could not increase the activity VP16 by adding acidic residues.
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are maximally exposed, adding more acidic residues will not in-

crease activity. By contrast, adding more aromatic residues can

increase activity only when there is excess acidity to keep these

added residues exposed. Adding too many aromatic residues

eventually reduces activity because they overwhelm the acidic

residues and drive chain collapse. Thus, a prediction of the acidic

exposure model is that acidic residues promote expanded

AD conformations, whereas aromatic residues promote chain

collapse.We tested thispredictionwithall-atomMonteCarlosim-

ulations of the VP16 andCITED2 variants (STARMethods) (Staller

et al., 2018; Vitalis and Pappu, 2009) and calculated the radius of

gyration,whichcaptures thesizeof theconformational ensemble.

Although the dispersion in the predicted radius of gyration is large

for any given net charge, we found that adding acidic residues in-

creases the radius of gyration, consistent with expansion (Fig-

ure S7A), and adding aromatic residues decreased the radius of

gyration, consistent with partial chain collapse (Figure S7B).

These trends hold true for the supercharge variants that add

both aromatic and acidic residues (Figure S7C).

Leucine residues are critical for AD activity
We found that leucine residues made large contributions to ac-

tivity. In yeast ADs, aromatic residues contribute more to activity

than smaller hydrophobic residues such as leucine and methio-

nine (Erijman et al., 2020; Jackson et al., 1996; Ravarani et al.,

2018; Staller et al., 2018). In human cells, VP16 and both p53

ADs fit the following pattern: substituting aromatic residues

decreased activity (Figures 2B, 4A, S2, and S4) (Cress and Trie-

zenberg, 1991; Lin et al., 1994). However, in VP16, ‘‘motif 2’’ con-

tains only leucine residues and is necessary for full AD activity

(Figure 2C). In CITED2, summarizing the activities of all substitu-

tions at each position reveals that leucine residues make the

Figure 4. Adding aromatics has context-

dependent effects on AD activity

(A) For variants that add or remove aromatic resi-

dues, the mean and standard deviation are plotted.

Activity (AU) is plotted against the number of aro-

matic (W,F,Y) residues. WT activity, black dot and

line; WT standard deviation, gray box. The relation-

ship between AD activity and the total number of

aromatics is complex.

(B) Variants that add or remove aromatic residues

are shownwith activity plotted against the number of

W,F,Y,L residues. Individual points for all variants

are shown in Figure S4.

largest contributions to activity, followed

by the acidic residues (Figure 5A). Similarly,

for VP16, aggregating the data by

position shows that the key positions are

F442, the leucine residues, and the acidic

residues (Figure S8A). Acidic and leucine

residues make large contributions to activ-

ity in these ADs.

The mechanism by which leucine resi-

dues make large contributions to activity

is exemplified by the structure of the

CITED2 interaction with TAZ1. TAZ1 has a

canyon with a hydrophobic floor and basic

rim that tightly embraces the compact alpha helix of CITED2 (Fig-

ure 7B). The leucine residues on CITED2 interact with the hydro-

phobic canyon floor, and the acidic residues interact with the

basic canyon rim. This tight structural constraint explains the ac-

tivities of many variants. The positions where mutations cause

large decreases in activity in Figure 5A point toward the coacti-

vator surface in the NMR structure of CITED2 bound to the

TAZ1 domain of CBP/p300 (Figure 5B). Hif1ɑ showed a similar

pattern (Figures 7B and 7C). Replacing leucines with aromatics

reduces activity because the larger side chains do not fit in the

canyon (Figures 5B and 5E). Disrupting the helix folding by add-

ing two proline residues reduces activity because a helix is very

compact and the unfolded peptide likely does not fit (Figures 5B

and S9). Adding two glycine residues does not disrupt activity

because they do not disrupt the helix formation in simulations

and they are very small (Figure S9). Finally, the D244E substitu-

tion reduces activity because the D224 acidic side chain (nega-

tive) sits between the narrowest point of the basic canyon rim,

sandwiched between the basic (positive) side chains R439 and

K365 of TAZ1, and replacing D244 with the larger glutamic

acid residue impairs this fit (Figures 5C and S10). Overall, muta-

tions that increase the size of the side chains decrease activity

because they impede the helix from fitting into the narrow

canyon on TAZ1.

Strong ADs balance hydrophobic and acidic residues
We found that AD activity requires a combination of aromatic and

leucine (W,F,Y,L) residues and acidic residues. Plotting the num-

ber of W,F,Y,L residues against net charge separates the high-

and low-activity variants (Figures 6A and S11A). This separation

is less apparent when we count only aromatic residues (Fig-

ure S11B) and is somewhat visible when we use calculated
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Kyte-Doolittle hydropathy (Figure S11C). Many points on this

grid contain both strong and weak variants (Figure S11A), indi-

cating that composition is not the sole determinant of activity

and that the arrangement of residues also matters. We found

that composition-based machine learning classifiers could

separate the active and inactive variants (Figure S11). When

we removed individual parameters from the model, we found

that the net charge and leucine residues made the largest contri-

butions to model performance (Table S1). Our results suggest

that the balance between W,F,Y,L and acidic residues is critical

for AD activity.

Predicting ADs
We examined whether the balance of acidic and W,F,Y,L resi-

dues could predict the ADs in human TFs. For one third of hu-

man TFs, the only annotated domain is the DBD (Lambert et al.,

2018), and only 8% of TFs have an AD annotated in Uniprot

(STAR Methods). In silico, we broke the protein sequences of

1,608 TFs (Lambert et al., 2018) into exhaustive tiling windows

of 39 residues (‘‘tiles’’) offset by one amino acid. For each tile,

we calculated the net charge and counted the W,F,Y,L resi-

dues. We plotted the joint distribution of these properties as

a heatmap (Figure 6B, blue) and found that VP16 and CITED2

are on the periphery. Tiles that have both the net charge and

hydrophobicity of these ADs are rare—only 0.02% and 0.03%

of tiles were as extreme or more extreme than VP16 and

CITED2, respectively. Interpolating between these ADs yields

0.13% of tiles (n = 1,139, Figure 6B, red), which combine to

predict 144 ADs from 136 TFs (Dataset 3). These predicted re-

gions overlap with 17 Uniprot ADs—far more than expected by

chance (p < 1e�5 in permutation tests). In addition, 11 pre-

dicted regions overlap 10 published ADs that are not in Uniprot

(p < 1e�5 in permutation tests), including the N-terminal AD of

c-Myc (Andresen et al., 2012) and the Zn473 KRAB domain

(Tycko et al., 2020). The predictor requires the combination of

the net negative charge and W,F,Y,L residues because neither

property alone provides specific predictions: using only the net

charge (%�9 from CITED2) yielded 18,086 tiles that combine to

856 predictions, 30 of which overlap the Uniprot ADs; using

only the W,F,Y, L counts (R7 from VP16) yielded 302,161 tiles

that combine to 3,411 predictions, 99 of which overlap the Uni-

prot ADs. The high degree of overlap between our predicted re-

gions and the literature-validated ADs motivated us to test the

predictions experimentally.

Testing the predicted ADs
We tested the predicted regions and found that our composition

model accurately predicted the ADs in the human proteome (Fig-

ure 6C). In a new experiment, we designed a library with 150 pre-

dicted regions (we split long regions to meet synthesis limits),

150 length-matched random regions, and 94 published ADs

(STARMethods). We did not allow the random regions to overlap

the predicted regions or Uniprot ADs. We recovered 149 pre-

dicted regions, 146 random regions, and 78 published ADs

(Data S4). In this dataset, we normalized the three replicates

with the No AD control (set to 200 GFP AU). Note that the activity

values are not directly comparable with the 5-AD experiment

above because the FACS was performed on a different day.

When using the No AD TF as the threshold for activity, 108/149

(72%) of the predicted ADs were active, 75/89 (84%) of pub-

lished ADs were active, and 55/149 (38%) of random regions

were active. As a threshold for strong AD activity, we chose

the 95th percentile of the random regions (221 AU). At this high

threshold, 58/149 (39%) of our predicted regions are strong

ADs and 52/89 (58%) of the published ADs are highly active.

Althoughwe do not expect all published ADs towork in our assay

because some ADs have promoter-specific activities (Goodrich

and Tjian, 2010), this analysis demonstrates that our predictor

identifies known ADs and accurately predicts previously uniden-

tified ADs.

Figure 5. Rational mutagenesis reveals the

structural constraints of an AD-coactivator

interaction interface

(A) For each position in CITED2, all variants that

changed the residue are summarized as a boxplot

(activity, AU). Note that each position has different

substitutions, and variants with multiple sub-

stitutions are included in multiple columns. Acidic

(red) and leucine (green) residues make large con-

tributions to AD activity. Medians, black lines.

Whiskers are 1.5 times the interquartile range. Out-

liers, gray dots. WT mean and standard, black line

and gray box. This analysis excludes the shuffle

variants.

(B) For all the positions in (A) with a median less than

3,000 AU, we visualized these residues (orange) on

the NMR structure of CITED2 bound to the TAZ1

coactivator (1R8U). CITED2 backbone, purple;

visualized residues, orange; and TAZ1, white. Resi-

dues that make large contributions to activity point

toward the coactivator surface.

(C) D224 (red) of CITED2 is sandwiched between the

narrowest point of the basic rim (blue) of the binding

canyon of TAZ1. See Figure S10 for snapshots of all

the 20 structures in 1R8U.
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DISCUSSION

The critical feature of strong ADs is the balance between hydro-

phobic and acidic residues. Both types of residues are neces-

sary because neither is sufficient alone, and too much of either

decreases activity. Hydrophobic residues make critical contacts

with coactivators (Dyson and Wright, 2016). Acidic residues can

have long-range interactions with basic residues on coactivators

(Ferreira et al., 2005; Hermann et al., 2001; Jonker et al., 2005),

but these interactions cannot explain the balance requirement.

We argue that the balance between hydrophobic and acidic res-

idues can be explained by the acidic exposure model.

In the acidic exposuremodel, acidic residuesand intrinsic disor-

der keep hydrophobic motifs exposed to solvent where they are

available to bind coactivators. Acidic residues prevent local chain

compaction through electrostatic repulsion and favorable free en-

ergies of solvation. This expansion exposes leucine and aromatic

residues to the solvent, so they are available to interactwith cofac-

tors. Intrinsic disorder reduces the entropic cost of organizing wa-

ter around the solvent-exposed hydrophobic residues because

fluctuating between the solvent-exposed and the solvent-pro-

tectedconformations lowers theaveragecostcomparedwithcon-

stant exposure. The acidic exposure model explains why ADs are

both negatively charged and intrinsically disordered: the acidic

residues and intrinsic disorder combine to keep aromatic and

leucine-rich motifs exposed and available to bind coactivators.

Promoting the exposure of hydrophobic motifs is compatible

with the other known functions of acidity and disorder in ADs.

In specific cases, intramolecular electrostatic interactions be-

tween the negatively charged ADs and the positively charged

DBDs can increase the DNA binding specificity (Krois et al.,

2018; Liu et al., 2008). We speculate that acidic residues may

also reduce nonspecific DNA binding by repelling the negatively

charged DNA backbone. Intrinsic disorder gives ADs the flexi-

bility to fold into different conformations when bound to different

coactivators (Dyson and Wright, 2016). Intrinsic disorder and

acidic residues together can also increase the fraction of molec-

ular collisions that lead to a productive coactivator binding by

enabling multiple folding trajectories (Kim et al., 2018; Kim and

Chung, 2020). The acidic exposure model is compatible with

these biophysical properties of the AD-coactivator interactions.

A key property of ADs is the balance between the strength of

their hydrophobic binding motifs and their capacity to keep those

motifs exposed to solvent. Adding more hydrophobic residues to

ADs will increase their activity so long as their intrinsic disorder

and acidic residues can keep the excess hydrophobicity from

collapsing the amino acid chain into an inactive conformation.

ADs have high hydrophobicity and high acidity, and their activity

requires a balance between these two physical properties.We ex-

ploited this observation to create an AD predictor that scans for a

highbut balanced composition of acidity and hydrophobicity. This

predictor can be used to prioritize the candidate acidic ADs on

poorly characterized TFs in any metazoan genome.

Not all hydrophobic residues make an equal contribution to

AD activity. In yeast, aromatic residues make the largest con-

tributions to activity (Erijman et al., 2020; Ravarani et al., 2018;

Sanborn et al., 2021; Staller et al., 2018), and, here, we found

that in human cells, leucine residues make large contributions

to activity. In human cells and yeast, valine and isoleucine (V,I)

do not make large contributions to activity, which explains

why the choice of hydrophobicity table determines whether

AD activity is correlated with hydrophobicity: when we used

the Kyte-Doolittle hydropathy table, we found no correlation

between activity and hydrophobicity because on this table,

V and I have large values, whereas W and Y have small values

(Kyte and Doolittle, 1982; Staller et al., 2018). By contrast,

Sanborn et al. chose the Wimley-White hydrophobicity table

which perfectly matches the order of residue contributions

Figure 6. Strong ADs are acidic and contain many W,F,Y,L residues

(A) For each point, the x position indicates the net charge and y position in-

dicates the number of W,F,Y,L residues. Color (AU) indicates the median ac-

tivity of all variants with each combination (see Figure S11 for all individual

variants). All variants of VP16, CITED2, and Hif1ɑ are included (n = 302). The No

AD control is 2,000 AU.

(B) A heatmap of all 39 AA tiles from human TFs (log scale). The pixel location

indicates the net charge and W,F,Y,L counts, and the blue intensity indicates

the number of tiles with that combination. Only 0.13% of tiles (red, rescaled

heatmap) are as extreme or more extreme than VP16 (x) and CITED2 (*). The

red tiles peak at CITED2.

(C) TF regions spanned by the red tiles (red, n = 149) are more likely to have AD

activity than random regions (blue, n = 146). Most, but not all, published ADs

(orange, n = 78) have high activity in this assay. In this experiment the No AD

control was normalized to 200 AU. The activities (AU) in panel A are not directly

comparable to the activities in panel C. The boxplot shows the quartiles and

whiskers are drawn at 1.5 times the interquartile range.
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to AD activity, leading to a correlation between activity and hy-

drophobicity (Sanborn et al., 2021; Wimley and White, 1996).

These are two among more than 27 published tables, each

of which remains an approximation (Colwell et al., 2010).

These results further emphasize that I-rich ADs in Drosophila

are a distinct functional class (Attardi and Tjian, 1993).

There is accumulating evidence that hydrophobic residues

in ADs do not always need to be organized into motifs with

strict arrangements (sequence grammar). When we designed

our mutations, the dominant model was that of the ADs that

had motifs surrounded by an acidic context. For example,

some ADs contain FxxFF motifs (where F is a hydrophobic

residue) in an amphipathic alpha helix that presents the hydro-

phobic residues as a continuous surface to the coactivator,

but this is just one solution among many. In yeast, screens

of random peptide and extant TFs have failed to find enriched

motifs longer than two residues and have shown that some

ADs behave as ‘‘bags of amino acids’’ that can be scrambled

with a minimal loss of activity (Erijman et al., 2020; Ravarani

et al., 2018; Sanborn et al., 2021). For the ADs identified by

our predictor, we did not see signatures of grammar. The suc-

cess of our composition-based predictor, which has no

grammar requirement, is evidence for very flexible grammar.

We speculate that hydrophobic residues in ADs may simply

need to be clustered and not arranged in motifs with specific

spacing grammar.

At the same time,we found thatwithin someADs, there are very

strongconstraints that reflect the structural constraints of theAD-

coactivator interface. Variants that shuffle AD sequences abolish

activity,which is evidence for somegrammar.Within a hydropho-

bic motif, the presence of aromatic or leucine residues reflects

the structural constraints in the AD-coactivator interaction sur-

faces, which looks like a strong grammar (Figure 5). Contrasting

the CITED2-TAZ1 interaction with the Gcn4-Med15 interaction

explains why aromatic residues make large contributions to ac-

tivity in Gcn4 whereas leucines predominate in CITED2 (Berlow

et al., 2017; Brzovic et al., 2011). Both ADs fold into alpha helices,

and both coactivators contain a binding canyonwith a hydropho-

bic floor and basic rim (Figure 7A). On TAZ1, the canyon is large

and the CITED2 alpha helix is engulfed (Figure 7B). Leucines fit

this structure better than aromatics because they are smaller

and promote folding into a compact helix (Pace and Scholtz,

1998). On Med15, the canyon is shallow and Gcn4 only inserts

side chains. A recent structure of the Gal4-Med15 binding inter-

action shows a similar fuzzy interaction centered on aromatic

and leucine residues (Pacheco et al., 2018; Tuttle et al., 2021). Ar-

omatics fit the Med15 binding surface better than leucine resi-

dues because they more easily reach the hydrophobic canyon

floor. The increased importance of leucine residues in human

ADs, such as CITED2, likely reflects the structural constraints

imposed by an expanded repertoire of coactivators. Going for-

ward, new approaches to high-throughput mutagenesis will be

Figure 7. The structure of the coactivator AD-binding canyon constrains AD sequence

(A) The CITED2 AD is inside the TAZ1 canyon, a structural constraint that favors leucine residues. The yeast Gcn4 AD is outside the Med15/Gal11 canyon,

enabling a fuzzy interaction that favors aromatic residues.

(B) The deep canyon of TAZ1 embraces CITED2 (orange, 1R8U).

(C) The binding canyon of Gal11 (Med15) is shallow, and the Gcn4 central acidic AD inserts aromatic side chains (2LPB). Colors in (B) and (C) are red, acidic

(negative); blue, basic (positive); green, hydrophobic; purple, aromatic; and other, white.
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efficient for exploring the structural constraints of the protein-

protein interaction surfaces (Diss and Lehner, 2018; Rollins

et al., 2019; Schmiedel and Lehner, 2019).

The acidic exposure model can explain several results in the

literature. Screens of random peptides found enrichment of

[DE][WFY] ‘‘mini motifs,’’ which support our model (Erijman

et al., 2020; Ravarani et al., 2018; Sanborn et al. 2021). Sanborn

et al. examined synthetic 9-mer peptides that mixed aromatic

and D residues and observed an increase and decrease in activ-

ity as aromatics are added (Sanborn et al., 2021). Peak activity

occurs when the D’s and F’s are well-mixed or when the F’s

are on the C terminus of the TF, both of which promote F expo-

sure and activity. Sanborn et al. screened the ability of diverse

sequences to modulate the activity of the Pdr1 AD and found

that hydrophobic residues decrease activity and acidic residues

boost activity. This modulation is consistent with hydrophobic

residues promoting collapse and acidic residues promoting

exposure. Balanced sequences are the most active.

We synthesize our findings in three conclusions: (1) strong

acidic ADs balance hydrophobic motifs and acidic residues; (2)

clusters of W,F,Y,L residues surrounded by acidic residues are

sufficient to predict new ADs; (3) the choice between aromatic

and leucine residues in an acidic AD is constrained by the struc-

ture of the coactivator interaction surface. These rules apply to a

subset of traditional acidic ADs, and our work implies that there

are multiple subclasses of acidic ADs. These insights will help

refine computational models for predicting ADs, guide engineer-

ing of ADs, and inform of the models that predict the impact of

genetic variation on AD function.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to Barak A. Cohen, cohen@wustl.edu

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

DH5alpha NEB C2989

Chemicals, peptides, and recombinant proteins

ß-estradiol Sigma E2758

G418 (Neomycin) Invitrogen 11811031

Puromycin Sigma P8833

Critical commercial assays

ZymoPURE II Plasmid Maxiprep Zymo D4202

MACS Dead cell removal kit Miltenyi Biotec 130-090-101

Deposited data

Short read sequencing data for Sort-seq

approach

This study NIH GEO: GSE190288

PDB structures Protein Data Bank IR8U, 2LPB, 1L8C

Experimental models: Cell lines

K562 with landing pad Maricque et al., 2018 LP3

K562 with landing pad and reporter This study T7.1E3

Oligonucleotides

Custom 217bp library for p53 mutagenesis Agilent N/A

Custom 217bp library for 5 acidic AD

mutagenesis

Agilent N/A

Custom oPool library for predicted Ads IDT N/A

Recombinant DNA

pMVS223 This study AddGene: 176293

pMVS184 This study AddGene: 176294

5 acidic activation domain variant plasmid

library

This study N/A

p53 activation domain variant plasmid

library

This study N/A

Predicted activation domain plasmid library This study N/A

Software and algorithms

LocalCIDER Holehouse et al., 2017 PMID: 28076807

FLASH (Mago�c and Salzberg, 2011) PMID: 21903629

ols from statsmodels.formula.api www.statsmodels.org www.statsmodels.org

SVR from sklearn Pedregosa et al., 2011 http://scikit-learn.org/

Custom analysis scripts This study doi:10.5281/zenodo.5799747

Activation domain predictor This study doi:10.5281/zenodo.5794650

CAMPARI campari.sourceforge.net N/A

ABSINTH Vitalis and Pappu, 2009 PMID: 18506808

VMD Humphrey et al., 1996 www.ks.uiuc.edu/Research/vmd/

SOURSOP soursop.readthedocs.io N/A
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Materials availability
The plasmids generated in this study have been deposited at AddGene.

The cell lines generated in this study are available upon request.

Data and code availability
d The AD activity data are included as Data S1, S2, and S4. The Illumina sequencing data have been deposited at GEO and are

publicly available as of the date of publication. Accession numbers are listed in the key resources table. All simulation data and

flow cytometry data reported in this paper will be shared by the lead contact upon request.

d The analysis code has been deposited in a public Github repository with a Zenodo DOI listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line construction
To engineer the K562 cell line we began with LP3 from (Maricque et al., 2018). These female cells were authenticated in Maricque

et al. (2018) just before we started using them. This landing pad is located on chromosome 11. First, we introduced a frameshift

mutation to the GFP in the landing pad using Cas9 (from Shondra Miller, Washington University School of Medicine GeiC) and a

gRNA against GFP (AddGene 41819). Second, we integrated our reporter at the AAVS1 locus using Cas9, the SM58 SSBD2 T2

gRNA (from Shondra Miller) and the pMVS184 reporter plasmid. Starting on Day 2, we selected for integrations with 1 ug/ml pu-

romycin for three days. We tested candidate reporter clones with transfections of a synthetic TF (pMVS 223) carrying p53 AD1,

choosing the clone with the largest dynamic range between baseline GFP and the brightest transfected cells. Our internal name for

this clone is T7.1E3.

Cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM) medium +10% FBS +1% Non Essential Amino Acids +1%

PennStrep (Gibco). All transfections used the Invitrogen Neon electroporation machine using a 100 ul tip, 1.2 M cells and 5 ug

of DNA.

METHOD DETAILS

Rational mutagenesis
The sequences of all 525 VP16, Hif1ɑ, CITED2, Stat3 and p65 variants are listed in Data S1. The systematic mutagenesis added and

removed charged residues or aromatic residues. Net charge of ADs was changed in two ways: subsets of charged residues were

changed to each of the four charged residues and alanine, or subsets of polar residues were changed to charged residues. Aromatic

residueswere changed to alanine, leucine or other aromatic residues, and aromatic residueswere added by replacing leucine, isoleu-

cine, alanine, methionine, and valine residues.

The ‘‘Hand Designed’’ p53 AD variants contained the same systematic mutations and more hand designed variants listed in Data

S2. The p53mutagenesis also included a deepmutational scan, a double alanine scan and sequences from orthologous TFs. Activity

values of each dataset are normalized separately and should not be directly compared.

Plasmid library construction
The plasmid sequences for the GFP reporter (pMVS184, Addgene 176294) and synthetic TF chassis (pMVS223, Addgene 176293)

are in Data S8.

In the 5 AD library, we designed the AD variants as protein sequences and reverse translated using optimal human codons. We

attached each variant to 28 unique 12 bp FREE barcodes (Hawkins et al., 2018). WT ADs had 84 barcodes each. Between the AD

and the barcode are BamHI, SacI and NheI restriction sites. For ADs that were less than 46AA, we added random filler DNA between

the BamHI and SacI sites. We added PCR primers at the start (CCCAGCTTAAGCCACCATG) and end (CTCGAGATAACTTCGTA

TAATGTATGCTAT). Note there is an XhoI site after the barcode, included in the downstream primer. We ordered 14968 unique

217 bp ssDNA oligos from Agilent.

We cloned the AD variant library by HiFi assembly. We added plasmid homology to the ssDNA oligos by PCR, yielding a 232 bp

product, with 4 cycles, Q5 polymerase, 0.5 pmol template and 8 reactions. The cloning primers were: TCACCGACCTCTCTCCC

CAGCTTAAGCCACCATG and ATAGCATACATTATACGAAGTTATCTCGAG. We digested the pMVS223 backbone with AflII, XhoI

and KpnI-HF and gel purified it. Each assembly had 100 ng of backbone and 5x molar ratio of insert. We electroporated bacteria

and collected �20 million colonies. We checked the library with paired end Illumina sequencing. We recovered 98.7% of our barc-

odes and all AD variants. For the second step of library cloning, we digested the library and pMVS223 with BamHI-HF and NheI-HF,

and inserted the synthetic TF by T4 ligation.We electroporated bacteria and collected 400K colonies.We recovered 93%of designed

barcodes and all ADs. In the final plasmid library the ADs are on the N terminus of the protein, between the initial methionine (ATG

start) and a GSGS linker. In the No AD control there is nothing between the starting methionine and the GSGS linker. The synthetic TF

is in followed by a P2A cleavage sequence and an in frame Neomycin resistance gene. As a result, 1 and 2 bp deletions, the most

common oligo synthesis errors, lead to frameshifts and are selected against after the library is integrated into the genome.
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The p53 library was constructed in the same way with 5 barcodes per variant, 30 for WT AD1 and 25 for WT AD2. We collected 4

million colonies after step one and 26 million after step two. We recovered 14355 of 14998 designed barcodes and 2990 of 2991

designed ADs. In this work we used data from both WT ADs and 171 hand designed variants.

All restriction enzymes, HiFi mix, and competent bacteria were purchased from NEB. Library Maxipreps were performed using the

ZymoPURE II Plasmid Maxiprep Kit (Zymo).

Plasmid library integration and measurement
In each transfection, we used 1.2 M cells, 2 ug of CMV-Cre (Maricque et al., 2018) and 3 ug of Plasmid Library. We transfected 102M

cells in 86 transfections split into 22 flasks. The next day, we began selection with 400 ng/ml G418 for 10 days. On Day 11 we per-

formed magnetic enrichment of live cells (MACS by Miltenyi Biotec). We combined flasks 1-5 into biological replicate 1, flasks 6-10

into biological replicate 2, flasks 11-15 into biological replicate 3, and flasks 16-22 into biological replicate 4. On Day 12, we added

ß-estradiol to a final concentration of 1 uM.

On Day 15 we sorted cells on a Sony HAPS 2 at the Siteman Cancer Center Flow Cytometry Core. We set an ON/OFF threshold for

GFP as the 90th percentile of the uninduced population (Figure S12). The lowest bin was the bottom 50% of the OFF population. The

ON region was split into 3 bins with equal populations. For each replicate, we collected 750K cells in each of the four bins. We noted

the median fluorescence of each bin and used that number to calculate AD activity (see below). The dynamic range of the measure-

ment is determined by the fluorescence values of the dimmest and brightest bin (Table S2). After collecting the 4 independent

replicates, we combined all the cells and sorted them into 8 bins eachwith�12%of the population—this sample has a larger dynamic

range (Table S2). These values are included in Data S1. These values are well correlated with the mean of the four biological repli-

cates, but because it is a single measurement, it does not have error bars. In the figures we plotted the mean and standard deviation

of the 4 biological replicates.

Barcode amplicon sequencing libraries
Genomic DNAwas collected using theQiampDNAMini kit (Qiagen).We performed 8 PCRs on each sample. The sequencing libraries

were prepared in 2 batches: Batch 1 contained biological replicates 1-3 and Batch 2 contained biological replicate 4 and the 8 bin

sort. We did 25 cycles with NEB Q5 polymerase using CP36.P10 and LP_019 primers. We pooled the PCRs, cleaned up the DNA

(NEB Monarch), quantified it, digested the entire sample with NheI and EcoRI-HF (NEB) for 90 minutes and then ligated sequencing

adaptors with T4 ligase (NEB) for 30 min. These adaptors contained sample barcodes in Read1 and Index1We used 4 ng of this liga-

tion for a 20 cycle enrichment PCR with Q5 and the EPCR_P1_short and EPCR_PE2_short primers. We sequenced each Batch on a

NextSeq 500 1x75 High Output run.

Each biological p53 replicate was sorted on a different day, so each sequencing library was sequenced separately with a NextSeq

500 1x75 High Output run.

CP36.P10 ctcccgattcgcagcgcatc

LP_019 GCAGCGTATCCACATAGCGTAAAAG

EPCR_P1_short AATGATACGGCGACCACCGAG

EPCR_PE2_short CAAGCAGAAGACGGCATACGAGAT

To assess the number of integrations in each experiment, we saved 1 ml of culture (0.5-1M cells) from each flask (4 transfections)

before themagnetic enrichment for live cells (Day 11).We extracted gDNA, amplified barcodes, and sequenced.We identified 96,000

unique integrations, an underestimate. In the sorted samples we recovered 14015 barcodes (93.6%of designed) total, 7164 in all four

replicates and 10798 in three or more replicates. All ADs were present in all replicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing
Wedemultiplexed samples using a combination of Index1 reads andRead1 inline barcodes using the ‘fastqconvert_XbaI.py.’We iden-

tified barcodes (grep), sorted the barcodes (sort) and counted them (unique -c) with the ‘processMSS18_Sort4_5_LigAdaptors.sh’

scripts. Demultiplexed fastq files have been deposited in GEO.

Using perfect matches, we counted the abundance of each FREE barcode in each sample using the ‘Preprocessing_MSS18_Mer-

geBCs_NextSeq_p53_2021_forpublication.ipynb’ script. We normalized the read counts first by the total reads in each sample and

then renormalized each barcode across bins to create a probability mass function. We used the probability mass function and the

median GFP fluorescence of each bin (Table S2) to calculate the activity of each barcode. To remove outlier barcodes, we found

all barcodes for an AD, computed the activity of each barcode, computed the mean and variance of the set of barcodes and then

removed any barcodes whose activity was more than two standard deviations away from the mean. We then took all the reads

from all remaining barcodes, pooled them and recomputed activity. This approach led to one activity measurement for each AD

in each biological replicate. The maps between AD sequences and DNA barcodes are included in Data S5, S6 and S7.

To combine data across replicates we used the ‘No AD control.’ We thank an anonymous reviewer for inspiring this analysis. In our

library cloning, the parent plasmid (pMVS223), which does not carry an AD, is present a low background, and this plasmid carries a

uniqure 9 bp barcode. We computed the activity of this No AD control in each replicate. Next we adjusted the raw activity values (by
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addition or subtraction) so that the No AD control had an activity of 2000 in each replicate. We chose 2000 so that no activity values

would be negative. We used the average and standard deviations of these adjusted activity values for further analysis.

For the p53 data, each replicate was collected on a different day using 2 sorters (Replicate 1 and 3: Sony HAPS 2; Replicate 2: a

highly modified Beckman Coulter MoFlow). Replicates 1 and 2 were sorted into 4 bins; Replicate 3 was sorted into 8 bins). To

combine these data we converted activities into Z scores and computed the mean and standard error of the mean (SEM). The

p53 control variants are from (Chang et al., 1995; Lin et al., 1994).

In the next step of preprocessing, we added physical property calculations and AD sequence names to the activity data using the

‘MSS18 Step 2 of Preprocessing (fix names and add columns) For publication.ipynb’. This script also manually corrected errors in

sequence names.

Analysis
All analysis was performed in Jupyter Notebooks with python 2.7 andMatplotlib, seaborn, pandas, localcider, biopython, logomaker

(Tareen and Kinney, 2020), scipy, statsmodels, sklearn, and ittertools. Colors are from Colorbrewer (https://colorbrewer2.org/). AD

sequence properties were calculated with localcider (Holehouse et al., 2017). To identify AD variants that were statistically signifi-

cantly different from each WT, we used a two-sided t test and 5% FDR correction. We computed the regressions with

statsmodels.api.OLS.

Structures were downloaded from the RSCBPDB (www.rcsb.org) and visualizedwith VMD (Humphrey et al., 1996).We normalized

activity values to [0-1], mapped the values to the Beta column of the pdb file and visualized positions with normalized activity < 0.2

(Figure 5B and S8C).

To summarize the effects of substitutions at each position (Figures 5A and S8A,B), we identified all variants that changed each

position, collected the activity measurements from all biological replicates and created a boxplot. We excluded the shuffle variants.

Sequence properties were calculated with the localcider package or by counting amino acids. The Omega parameter was

computed with localcider using the get_kappa_X([‘W’,’F’,’Y’,’L’],[‘D’,’E’]) command.

Figure panels were generated with the ‘MSS18 PaperFiguresRevision.ipynb’ and ‘MSS19_predictedADs_forpublication_v2.ipynb’

jupyter notebooks in the Github repository.

Machine learning
The machine learning analysis was carried out in python with the sklearn package. We started with all variants of VP16, Hif1ɑ and

CITED2 and then excluded the shuffle variants. The High Activity set (N = 121) had variants with a mean activity above 3400. The

Low Activity set (N = 134) had variants with a mean activity below 2900 (Figure S11F). We normalized all parameters to be between

[0,1]. We performed 5-fold cross validation and assessed model performance with the Area Under the Curve (AUC) of the Receiver

Operator Characteristic (ROC). We compared Support Vector Machines, Logistic Regression and Random Forest classifiers.

All atom simulations
We ran all-atom, Monte Carlo simulations in the CAMPARI simulation engine (campari.sourceforge.net) using the ABSINTH implicit

solvent paradigm (Vitalis and Pappu, 2009). This simulation framework is a well established approach to study the conformational

ensembles of intrinsically disordered regions (Martin et al., 2016; Metskas and Rhoades, 2015; Vitalis and Pappu, 2009) and we

have previously used it to study the Central Acidic AD of the yeast TF, Gcn4 (Staller et al., 2018). We simulated all VP16 and CITED2

variants. For Hif1ɑ, we simulated all hand designed variants and the WT sequence.

For each variant, we ran ten simulations starting in a helix and ten starting in a random coil. For the WT sequences, we ran 30 sim-

ulations from each starting configuration. In total we ran 4300 simulations. Each simulation had a pre-equilibration run of 2M steps.

Thenwe began themain simulation with 10M steps of equilibration and themain simulation of 50M steps, extracting the conformation

every 10K steps, yielding 5000 conformations per simulation. Simulation analysis was performed with the CAMPARItraj (ctraj.com),

now SOURSOP ( https://soursop.readthedocs.io/), software suite. This software suite calculated helicity with the DSSP algorithm

(Kabsch and Sander, 1983) and radius of gyration as the distribution of atoms in each confirmation without weighting by mass (Hole-

house et al., 2017). The accessibility was calculated by rolling a 1.5 nm spherical marble around each confirmation and summing the

solvent accessible surface area of the W,F,Y,L residues (Staller et al., 2018). To speed up this analysis accessibility was assessed

every 20 confirmations.

The summary statistics for all the simulations is in Data S9.

Predicting ADs in human TFs
We downloaded protein sequences from Uniprot for 1608 TFs (Lambert et al., 2018). For each TF, we created 39 AA tiling windows,

spaced every 1 AA, yielding 881,344 tiles. For each tile, we computed the net charge (counting D,E,K&R) and counted W,F,Y,L

residues.

We identified tiles that were as extreme or more extreme than VP16 and CITED2. We used a diagonal line to extrapolate between

these ADs. The tiles predicted to cover ADs (Figure 6B, red pixels), fulfill 3 criteria:

(Charge < -9) AND (WFYL > 7) AND (((Charge+9)-(WFYL-10)) <= 0)

This algorithm identified 1139 tiles, 0.129% of the total. We aggregated overlapping tiles to predict 144 ADs on 136 TFs (See Data

S3 for locations on parent TFs and sequences). To test these predictions, we used ADs annotated in Uniprot. We downloaded.gff files
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for the 1608 TFs from Uniprot. We used 4 regular expressions to search the ‘‘regions’’ column of the.gff files for ‘‘activation’’, ‘‘TAD’’,

‘‘Required for transcriptional activation’’ and ‘‘Required for transcriptional activation.’’ These searches yielded 110 unique ADs,

including 7 proline rich ADs (>20% proline) and 3 glutamine rich ADs (>20% glutamine).

We used permutation tests to determine if our predictor was better than random. We randomly selected 136 TFs, randomly

selected 144 length matched regions and determined how many overlapped the 110 known ADs. For the 4 TFs with 2 predicted

ADs, we preserved the coupling between these lengths. In 100K permutations, we never observed more than 11 overlaps. 17 of

our predicted ADs overlapped the 110 Uniprot ADs.

Testing predicted ADs
We built a third plasmid library to test the predicted ADs. Due to DNA synthesis limits, we split long predicted regions and tested 150

regions of 39-76 residues. To create an empirical distribution for the prevalence of ADs on TFs, we included 150 length-matched

regions randomly drawn from TF sequences (Lambert et al., 2018). We required that these random regions did not overlap our pre-

dicted ADs or Uniprot ADs. The 92 positive control ADs were drawn from: 36 hand-curated ADs (RegionType=Hand_Curated_ADs),

35 ADs from a published list (RegionType=Choi_2000_PMID_10821850) (Choi et al., 2000), 19 Uniprot domains that overlapped our

predictions (RegionType=Uniprot), and 2 published synthetic DW or DF runs (RegionType=Controls) (Ravarani et al., 2018). We also

included 3 KRAB domains from Uniprot, 22 mutant ADs and 26 regions tiling the human TF, Crx. Due to human error, we did not test

the correct predicted region of AEBP1 (Q8IUX7) and tested 2 other regions instead. The full list of sequences and activities is included

in Data S4. The ‘Known ADs’ in Figure 6C are flagged in the ‘Positive Controls’ column. The ‘Negative Controls’ column indicates

mutant ADs.

The plasmid library was cloned in a similar manner as above. The oligos were ordered as a oPool from IDT. Oligo length varied. For

each AD, we included one 9 bp ‘AD barcode’ (Hawkins et al., 2018). During the second step of cloning, we added 6Ns downstream of

the synthetic TF by PCR, which became the ‘integration barcode.’ In principle, a different integration barcode marks each plasmid

integration event, analogous to a Unique Molecular Identifier in single cell RNA-seq protocols. The resulting ‘composite barcode’

contained a 6 bp ‘integration barcode’, the NheI restriction site and the 9 bp ‘AD barcode.’ 76 transfections were split into 3 biological

replicates. G418 selection began on Day 1, magnetic separation was performed on Day 11, ß-estradiol induction began on Day 11

and cell sorting on Day 14. For each biological replicate, we sorted into 4 bins. During the sequencing library preparation, we per-

formed 24 PCRs for each gDNA sample. We added Index1 and Index2 barcodes by PCR.

After integrating the plasmid library into cells, we deeply sequenced gDNA from the unsorted cell pool to build a ‘composite bar-

code’ table (Check_Complexity_MSS19_nextSeq.ipynb). This table contained 44077 composite barcodes with at least 10 reads in

one of the 3 biological replicates. For all subsequent analysis, we matched reads to this table. We used perfect matches to designed

‘AD barcodes’ and combined reads for all ‘integration barcodes’ attached to each ‘AD barcode’ as described above: we first

removed outliers and then combined read counts (MSS19_preprocessing.ipynb). In this experiment, we found that the No ADControl

TF had 9, 10, 10 integration barcodes in each replicate, respectively. We combined replicates by first setting the activity of the No AD

Control to 200 and then computing the mean and standard deviation. The biological replicates contained 20850, 19758 and 21656

uniquely identifiable integrations. We designed 443 ADs, detected 434 in the plasmid library, and detected 431 integrated into cells.

We required 5 or more unique integration barcodes in at least one replicate, yielding 428 ADs for downstream analysis. In Figure 6C,

the threshold for AD activity was 200, and the threshold for strong AD activity was 223, the 95th percentile of the random regions.
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