10,250 research outputs found

    Measuring impact of academic research in computer and information science on society

    Get PDF
    Academic research in computer & information science (CIS) has contributed immensely to all aspects of society. As academic research today is substantially supported by various government sources, recent political changes have created ambivalence amongst academics about the future of research funding. With uncertainty looming, it is important to develop a framework to extract and measure the information relating to impact of CIS research on society to justify public funding, and demonstrate the actual contribution and impact of CIS research outside academia. A new method combining discourse analysis and text mining of a collection of over 1000 pages of impact case study documents written in free-text format for the Research Excellence Framework (REF) 2014 was developed in order to identify the most commonly used categories or headings for reporting impact of CIS research by UK Universities (UKU). According to the research reported in REF2014, UKU acquired 83 patents in various areas of CIS, created 64 spin-offs, generated £857.5 million in different financial forms, created substantial employment, reached over 6 billion users worldwide and has helped save over £1 billion Pounds due to improved processes etc. to various sectors internationally, between 2008 and 2013

    Conflict-Free Coloring Made Stronger

    Full text link
    In FOCS 2002, Even et al. showed that any set of nn discs in the plane can be Conflict-Free colored with a total of at most O(logn)O(\log n) colors. That is, it can be colored with O(logn)O(\log n) colors such that for any (covered) point pp there is some disc whose color is distinct from all other colors of discs containing pp. They also showed that this bound is asymptotically tight. In this paper we prove the following stronger results: \begin{enumerate} \item [(i)] Any set of nn discs in the plane can be colored with a total of at most O(klogn)O(k \log n) colors such that (a) for any point pp that is covered by at least kk discs, there are at least kk distinct discs each of which is colored by a color distinct from all other discs containing pp and (b) for any point pp covered by at most kk discs, all discs covering pp are colored distinctively. We call such a coloring a {\em kk-Strong Conflict-Free} coloring. We extend this result to pseudo-discs and arbitrary regions with linear union-complexity. \item [(ii)] More generally, for families of nn simple closed Jordan regions with union-complexity bounded by O(n1+α)O(n^{1+\alpha}), we prove that there exists a kk-Strong Conflict-Free coloring with at most O(knα)O(k n^\alpha) colors. \item [(iii)] We prove that any set of nn axis-parallel rectangles can be kk-Strong Conflict-Free colored with at most O(klog2n)O(k \log^2 n) colors. \item [(iv)] We provide a general framework for kk-Strong Conflict-Free coloring arbitrary hypergraphs. This framework relates the notion of kk-Strong Conflict-Free coloring and the recently studied notion of kk-colorful coloring. \end{enumerate} All of our proofs are constructive. That is, there exist polynomial time algorithms for computing such colorings

    Spectral Analysis and the Dynamic Response of Complex Networks

    Full text link
    The eigenvalues and eigenvectors of the connectivity matrix of complex networks contain information about its topology and its collective behavior. In particular, the spectral density ρ(λ)\rho(\lambda) of this matrix reveals important network characteristics: random networks follow Wigner's semicircular law whereas scale-free networks exhibit a triangular distribution. In this paper we show that the spectral density of hierarchical networks follow a very different pattern, which can be used as a fingerprint of modularity. Of particular importance is the value ρ(0)\rho(0), related to the homeostatic response of the network: it is maximum for random and scale free networks but very small for hierarchical modular networks. It is also large for an actual biological protein-protein interaction network, demonstrating that the current leading model for such networks is not adequate.Comment: 4 pages 14 figure

    Proposing "b-Parity" - a New Approximate Quantum Number in Inclusive b-jet Production - as an Efficient Probe of New Flavor Physics

    Full text link
    We consider the inclusive reaction \ell^+ \ell^- -> nb +X (n = number of b-jets) in lepton colliders for which we propose a useful approximately conserved quantum number b_P=(-1)^n that we call b-Parity (b_P). We make the observation that the Standard Model (SM) is essentially b_P-even since SM b_P-violating signals are necessarily CKM suppressed. In contrast new flavor physics can produce b_P=-1 signals whose only significant SM background is due to b-jet misidentification. Thus, we show that b-jet counting, which relies primarily on b-tagging, becomes a very simple and sensitive probe of new flavor physics (i.e., of b_P-violation).Comment: 5 pages using revtex, 2 figures embadded in the text using epsfig. As will appear in Phys.Rev.Lett.. Considerable improvement was made in the background calculation as compared to version 1, by including purity parameters, QCD effects and 4-jets processe

    A TQFT associated to the LMO invariant of three-dimensional manifolds

    Full text link
    We construct a Topological Quantum Field Theory (in the sense of Atiyah) associated to the universal finite-type invariant of 3-dimensional manifolds, as a functor from the category of 3-dimensional manifolds with parametrized boundary, satisfying some additional conditions, to an algebraic-combinatorial category. It is built together with its truncations with respect to a natural grading, and we prove that these TQFTs are non-degenerate and anomaly-free. The TQFT(s) induce(s) a (series of) representation(s) of a subgroup Lg{\cal L}_g of the Mapping Class Group that contains the Torelli group. The N=1 truncation produces a TQFT for the Casson-Walker-Lescop invariant.Comment: 28 pages, 13 postscript figures. Version 2 (Section 1 has been considerably shorten, and section 3 has been slightly shorten, since they will constitute a separate paper. Section 4, which contained only announce of results, has been suprimated; it will appear in detail elsewhere. Consequently some statements have been re-numbered. No mathematical changes have been made.

    Valence fuctuation and magnetic ordering in EuNi2(P1-xGex)2 single crystals

    Full text link
    Unusual phases and phase transitions are seen at the magnetic-nonmagnetic boundary in Ce, Eu and Yb-based compounds. EuNi2_2P2_{2} is a very unusual valence fluctuating Eu system, because at low temperatures the Eu valence stays close to 2.5 instead of approaching an integer value. Eu valence and thus the magnetic property in this system can be tuned by Ge substitution in P site as EuNi2_2Ge2_{2} is known to exhibit antiferromagnetc (AFM) ordering of divalent Eu moments with TNT_N = 30 K. We have grown EuNi2_2(P1x_{1-x}Gex_x)2_2 (0.0 \leq xx \leq 0.5) single crystals and studied their magnetic, thermodynamic and transport properties. Increasing Ge doping to x>x > 0.4 results in a well-defined AFM ordered state with TNT_N = 12 K for xx = 0.5. Moreover, the reduced value of magnetic entropy for xx = 0.5 at TNT_N suggests the presence of valance fluctuation/ Kondo effect in this compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld coefficient upon Ge doping. Subsequently, electronic structure calculations lead to a non-integral valence in EuNi2_2P2_{2} but a stable divalent Eu state in EuNi2_2Ge2_{2} which is in good agreement with experimental results.Comment: 7 pages, 8 figure

    Excitonic Funneling in Extended Dendrimers with Non-Linear and Random Potentials

    Full text link
    The mean first passage time (MFPT) for photoexcitations diffusion in a funneling potential of artificial tree-like light-harvesting antennae (phenylacetylene dendrimers with generation-dependent segment lengths) is computed. Effects of the non-linearity of the realistic funneling potential and slow random solvent fluctuations considerably slow down the center-bound diffusion beyond a temperature-dependent optimal size. Diffusion on a disordered Cayley tree with a linear potential is investigated analytically. At low temperatures we predict a phase in which the MFPT is dominated by a few paths.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    Disorder and Funneling Effects on Exciton Migration in Tree-Like Dendrimers

    Full text link
    The center-bound excitonic diffusion on dendrimers subjected to several types of non-homogeneous funneling potentials, is considered. We first study the mean-first passage time (MFPT) for diffusion in a linear potential with different types of correlated and uncorrelated random perturbations. Increasing the funneling force, there is a transition from a phase in which the MFPT grows exponentially with the number of generations gg, to one in which it does so linearly. Overall the disorder slows down the diffusion, but the effect is much more pronounced in the exponential compared to the linear phase. When the disorder gives rise to uncorrelated random forces there is, in addition, a transition as the temperature TT is lowered. This is a transition from a high-TT regime in which all paths contribute to the MFPT to a low-TT regime in which only a few of them do. We further explore the funneling within a realistic non-linear potential for extended dendrimers in which the dependence of the lowest excitonic energy level on the segment length was derived using the Time-Dependent Hatree-Fock approximation. Under this potential the MFPT grows initially linearly with gg but crosses-over, beyond a molecular-specific and TT-dependent optimal size, to an exponential increase. Finally we consider geometrical disorder in the form of a small concentration of long connections as in the {\it small world} model. Beyond a critical concentration of connections the MFPT decreases significantly and it changes to a power-law or to a logarithmic scaling with gg, depending on the strength of the funneling force.Comment: 13 pages, 9 figure
    corecore