41 research outputs found

    Weak links and phase slip centers in superconducting MgB2 wires

    Full text link
    MgB2 superconducting wires were produced by the Mg diffusion method. Scanning electron microscopy (SEM), optical microscopy, dispersive x-ray analysis (EDS) and XRD diffraction were used to study the physical structure and content of the wires. Magnetic properties (Tcm, Hc1, Hc2, Jc by the Bean model) were obtained with a SQUID magnetometer, and transport properties (Tcr, Hc2, resistivity and residual resistivity ratio) were measured using a standard four-lead configuration. The V-I characteristics of the wires close to the critical temperature showed a staircase response, which was attributed to the presence of weak links, creating phase slip centers. The origin of those weak links is discussed in relation to their formation and structure.Comment: 7 pages, 7 figures, accepted to Journal of Superconductivit

    Au-MoS2 Hybrids as Hydrogen Evolution Electrocatalysts

    Get PDF
    Core-shell nanoparticles provide a unique morphology to exploit electronic interactions between dissimilar materials, conferring upon them new or improved functionalities. MoS2 is a layered transition-metal disulfide that has been studied extensively for the hydrogen evolution reaction (HER) but still suffers from low electrocatalytic activity due to its poor electronic conductivity. To understand the fundamental aspects of the MoS2-Au hybrids with regard to their electrocatalytic activity, a single to a few layers of MoS2 were deposited over Au nanoparticles via a versatile procedure that allows for complete encapsulation of Au nanoparticles of arbitrary geometries. High-resolution transmission electron microscopy of the Au@MoS2 nanoparticles provides direct evidence for the core-shell morphology and also reveals the presence of morphological defects and irregularities in the MoS2 shell that are known to be more active for HER than the pristine MoS2 basal plane. Electrochemical measurements show a significant improvement in the HER activity of Au@MoS2 nanoparticles relative to freestanding MoS2 or Au-decorated MoS2. The best electrochemical performance was demonstrated by the Au nanostars - the largest Au core employed here - encapsulated in a MoS2 shell. Density-functional theory calculations show that charge transfer occurs from the Au to the MoS2 layers, producing a more conductive catalyst layer and a better electrode for electrochemical HER. The strategies to further improve the catalytic properties of such hybrid nanoparticles are discussed

    Line Defects in Molybdenum Disulfide Layers

    Full text link
    Layered molecular materials and especially MoS2 are already accepted as promising candidates for nanoelectronics. In contrast to the bulk material, the observed electron mobility in single-layer MoS2 is unexpectedly low. Here we reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion domains, where the layer changes its direction through a line defect. The line defects are observed experimentally by atomic resolution TEM. The structures were modeled and the stability and electronic properties of the defects were calculated using quantum-mechanical calculations based on the Density-Functional Tight-Binding method. The results of these calculations indicate the occurrence of new states within the band gap of the semiconducting MoS2. The most stable non-stoichiometric defect structures are observed experimentally, one of which contains metallic Mo-Mo bonds and another one bridging S atoms

    NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation

    Full text link
    The control of heat at the nanoscale via the excitation of localized surface plasmons in nanoparticles (NPs) irradiated with light holds great potential in several fields (cancer therapy, catalysis, desalination). To date, most thermoplasmonic applications are based on Ag and Au NPs, whose cost of raw materials inevitably limits the scalability for industrial applications requiring large amounts of photothermal NPs, as in the case of desalination plants. On the other hand, alternative nanomaterials proposed so far exhibit severe restrictions associated with the insufficient photothermal efficacy in the visible, the poor chemical stability, and the challenging scalability. Here, it is demonstrated the outstanding potential of NiSe and CoSe topological nodal-line semimetals for thermoplasmonics. The anisotropic dielectric properties of NiSe and CoSe activate additional plasmonic resonances. Specifically, NiSe and CoSe NPs support multiple localized surface plasmons in the optical range, resulting in a broadband matching with sunlight radiation spectrum. Finally, it is validated the proposed NiSe and CoSe-based thermoplasmonic platform by implementing solar-driven membrane distillation by adopting NiSe and CoSe nanofillers embedded in a polymeric membrane for seawater desalination. Remarkably, replacing Ag with NiSe and CoSe for solar membrane distillation increases the transmembrane flux by 330% and 690%, respectively. Correspondingly, costs of raw materials are also reduced by 24 and 11 times, respectively. The results pave the way for the advent of NiSe and CoSe for efficient and sustainable thermoplasmonics and related applications exploiting sunlight within the paradigm of the circular blue econom

    Refinement procedure for the image alignment in high-resolution electron tomography

    No full text
    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data

    Bright-field electron tomography of individual inorganic fullerene-like structures

    No full text
    Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties

    Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Ag2S-MoS2 interface

    No full text
    Designing electrocatalysts for HER in alkaline conditions to overcome the sluggish kinetics associated with the additional water dissociation step is a recognized challenge in promoting the hydrogen economy. To this end, delicately tuning the atomic-scale structure and surface composition of nanoparticles is a common strategy and, specifically, making use of hybrid structures, can produce synergistic effects that lead to highly active catalysts. Here, we present a core-shell catalyst of Ag@MoS2 that shows promising results towards the hydrogen evolution reaction (HER) in both 0.5 M H2SO4 and 0.5 M KOH. In this hybrid structure, the MoS2 shell is strained and defective, and charge transfer occurs between the conductive core and the shell, contributing to the electrocatalytic activity. The shelling process results in a large fraction of Ag2S in the cores, and adjusting the relative fractions of Ag, Ag2S, and MoS2 leads to improved catalytic activity and fast charge-transfer kinetics. We suggest that the enhancement of alkaline HER is associated with a cooperative effect of the interfaces, where the Ag(I) sites in Ag2S drive the water dissociation step, and the formed hydrogen subsequently recombines on the defective MoS2 shell. This study demonstrates the benefits of hybrid structures as functional nanomaterials and provides a scheme to activate MoS2 for HER in alkaline conditions.This research was supported by the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel and the United States National Science Foundation (NSF) grant 2017642, and partly from the Israeli Atomic Energy Commission–Prof. A. Pazy joint foundation, ID126-2020. S.H. and R.A. acknowledge funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 889546 as well as from the Spanish MICINN (project grant PID2019-104739GB-100/AEI/10.13039/501100011033). R.A. also support the funding from the European Union H2020 program Graphene Flagship CORE3 (881603).Peer reviewe

    Solution phase synthesis of homogeneously alloyed ultrathin CdS x_{x} Se 1−x_{1−x} nanosheets

    No full text
    Provided that precise control could be achieved over their optoelectronic properties, semiconductor two-dimensional (2D) nanosheets with a thickness of a few monolayers would constitute appealing building blocks. It is well established that alloying promotes efficient bandgap engineering, but divergent precursor reactivities have so far prevented the production of homogeneously alloyed 2D structures. We report a simple synthesis of alloyed CdSxSe1−x that preserves the 2D nature. High resolution microscopy reveals their edge structure and atomic rearrangement within the layer. Their optical properties show a comparable or higher quantum yield relative to pure nanosheets, making them promising materials for various applications
    corecore