143 research outputs found

    Sinusoidal electromagnon in RMnO3: Indication of anomalous magnetoelectric coupling

    Get PDF
    The optical spectra in the family of multiferroic manganites RMnO3 is a great puzzle. Current models can not explain the fact that two strong electromagnons are present in the non-collinear spin cycloidal phase, with only one electromagnon surviving the transition into the collinear spin sinusoidal phase. We show that this is a signature of the presence of anomalous magnetoelectric coupling that breaks rotational invariance in spin space and generates oscillatory polarization in the ground state.Comment: 5 pages, 2 figure

    Dynamical magnetoelectric effects in multiferroic oxides

    Full text link
    Multiferroics with coexistent ferroelectric and magnetic orders can provide an interesting laboratory to test unprecedented magnetoelectric responses and their possible applications. One such example is the dynamical and/or resonant coupling between magnetic and electric dipoles in a solid. As the examples of such dynamical magnetoelectric effects, (1) the multiferroic domain wall dynamics and (2) the electric-dipole active magnetic responses are discussed with the overview of recent experimental observations.Comment: 15 pages including 6 figures; Accepted for publication in Phil. Trans. A Roy. Soc. (Special issue, Spin on Electronics

    Symmetry Theory of the Flexomagnetoelectric Interaction in the Magnetic Vortices and Skyrmions

    Full text link
    Symmetry classification of the magnetic vortices and skyrmions has been suggested. Relation between symmetry based predictions and direct calculation has been shown. It was shown, that electric dipole moment of the vortex is located inside the small vortex core. The antivortices and antiskyrmions do not carry the total core electric dipole induced by the flexomagnetoelectric interaction in the hexoctahedral cubic crystal. The volumetric bound electric charge is distributed around the core. Switching of the core electric dipole direction produces the switching of the core magnetization or vortex chirality and vice versa. The vortices and skyrmions with time-invariant enantiomorphism have two degenerative states: clockwise and counterclockwise state.Comment: Submitted revised version to the Physica B: Condenced Matte

    Inhomogeneous Magnetoelectric Effect on Defect in Multiferroic Material: Symmetry Prediction

    Full text link
    Inhomogeneous magnetoelectric effect in magnetization distribution heterogeneities (0-degree domain walls) appeared on crystal lattice defect of the multiferroic material has been investigated. Magnetic symmetry based predictions of kind of electrical polarization distribution in their volumes were used. It was found that magnetization distribution heterogeneity with any symmetry produces electrical polarization. Results were systemized in scope of micromagnetic structure chirality. It was shown that all 0-degree domain walls with time-noninvariant chirality have identical type of spatial distribution of the magnetization and polarization.Comment: submitted to IOP Conference Series: Materials Science and Engineerin

    Statistical theory of the excited strip domain structure

    Full text link
    A statistical theory of the strip domain structure excited in a bubble film by an oscillating magnetic field is developed. The theory is based on the consideration of the strip domain structure as a thermodynamic system characterized by the spectrum of domain walls oscillation and an effective temperature that is caused by an oscillating magnetic field and film nonuniformities. We found the thermodynamic characteristics of that domain structure and calculated its period as a function of the frequency and amplitude of an oscillating magnetic field.Comment: 6 pages, 3 figure

    Nonlocal feedback in ferromagnetic resonance

    Full text link
    Ferromagnetic resonance in thin films is analyzed under the influence of spatiotemporal feedback effects. The equation of motion for the magnetization dynamics is nonlocal in both space and time and includes isotropic, anisotropic and dipolar energy contributions as well as the conserved Gilbert- and the non-conserved Bloch-damping. We derive an analytical expression for the peak-to-peak linewidth. It consists of four separate parts originated by Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a contribution arising from retardation. In an intermediate frequency regime the results are comparable with the commonly used Landau-Lifshitz-Gilbert theory combined with two-magnon processes. Retardation effects together with Gilbert damping lead to a linewidth the frequency dependence of which becomes strongly nonlinear. The relevance and the applicability of our approach to ferromagnetic resonance experiments is discussed.Comment: 22 pages, 9 figure

    Two Simple Approaches to Sol-Gel Transition

    Get PDF
    We represent a theory of polymer gelation as an analogue of liquid-glass transition in which elastic fields of stress and strain shear components appear spontaneously as a consequence of the cross-linking of macromolecules. This circumstance is explained on the basis of obvious combinatoric arguments as well as a synergetic Lorenz system, where the strain acts as an order parameter, a conjugate field is reduced to the elastic stress, and the number of cross-links is a control parameter. Both the combinatoric and synergetic approaches show that an anomalous slow dependence of the shear modulus on the number of cross-links is obtained.Comment: 10 pages, LaTe
    corecore