76 research outputs found

    Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy

    Get PDF
    Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway-modulating therapeutics.This article is freely available via Open Access. Click on the publisher URL to access it via the publisher's site.G1002279/MRC_/Medical Research Council/United Kingdom R25 NS065729/NS/NINDS NIH HHS/United States Z01 AG000949/ImNIH/Intramural NIH HHS/United States R01 NS062869/NS/NINDS NIH HHS/United States F31 NS105404/NS/NINDS NIH HHS/United Statespre-print, post-print, publisher's version/PD

    MNS1 variant associated with situs inversus and male infertility

    Get PDF
    Ciliopathy disorders due to abnormalities of motile cilia encompass a range of autosomal recessive conditions typified by chronic otosinopulmonary disease, infertility, situs abnormalities and hydrocephalus. Using a combination of genome-wide SNP mapping and whole exome sequencing (WES), we investigated the genetic cause of a form of situs inversus (SI) and male infertility present in multiple individuals in an extended Amish family, assuming that an autosomal recessive founder variant was responsible. This identified a single shared (2.34 Mb) region of autozygosity on chromosome 15q21.3 as the likely disease locus, in which we identified a single candidate biallelic frameshift variant in MNS1 [NM_018365.2: c.407_410del; p.(Glu136Glyfs*16)]. Genotyping of multiple family members identified randomisation of the laterality defects in other homozygous individuals, with all wild type or MNS1 c.407_410del heterozygous carriers being unaffected, consistent with an autosomal recessive mode of inheritance. This study identifies an MNS1 variant as a cause of laterality defects and male infertility in humans, mirroring findings in Mns1-deficient mice which also display male infertility and randomisation of left-right asymmetry of internal organs, confirming a crucial role for MNS1 in nodal cilia and sperm flagella formation and function.This article is freely available via Open Access. Click on the Publisher URL to access the full-text

    Datasets of whole cell and mitochondrial oxysterols derived from THP-1, SH-SY5Y and human peripheral blood mononuclear cells using targeted metabolomics

    Get PDF
    The raw datasets of oxysterol quantifications from whole cell and mitochondrial fractions of THP-1 monocytes and macrophages, neuronal-like SH-SH5Y cells and human peripheral blood mononuclear cells are presented. Oxysterols were quantified using a new liquid chromatography-mass spectrometry (LC-MS) and multiple reaction monitoring analysis published in the article “A quantitative LC-MS/MS method for analysis of mitochondrial-specific oxysterol metabolism” in Redox Biology [1]. This method showed improved extraction efficiency and recovery of mono and dihydroxycholesterols from cellular matrix. The datasets derived from the three cell lines are included in the appendix. These datasets provide new information about the oxysterol distribution in THP-1 monocytes and macrophages, SH-SY5Y cells and peripheral blood mononuclear cells. These datasets can be used as a guide for oxysterol distribution in the three cell lines for future studies, and can used for future method optimization, and for comparison of oxysterol recovery with other analytical techniques

    Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism

    Get PDF
    Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data.This article is freely available via Open Access. Click on the publisher URL to access it via the publisher's site.We acknowledge funding from Wellcome ( 200990 ). S.E. is a Wellcome Senior Investigator. U.F.P. is supported by a predoctoral fellowship from the Basque Government ( PRE_2018_1_0253 ). M.M.O. is supported by a predoctoral fellowship from the University of the Basque Country ( UPV/EHU, PIF 2018 ). I.J.H. is supported by the Carlos III Health Program ( PI17/00380 ), and PaĂ­s Vasco Department of Health ( 2018111043 ; 2018222031 ). A.S. is supported by the UK Medical Research Council with a Senior Non-Clinical Fellowship ( MC_PC_13029 ). T. Harel is supported by the Israel Science Foundation grant 1663/17 . W.H.Y. is supported by the National Institute of General Medical Sciences of the National Institutes of Health through grant 5 P20 GM103636-07 . J.R.L. is supported by the US National Institute of Neurological Disorders and Stroke ( R35NS105078 ), the National Institute of General Medical Sciences ( R01GM106373 ), and the National Human Genome Research Institute and National Heart Lung and Blood Institute (NHGRI/NHBLI) to the Baylor-Hopkins Center for Mendelian Genomics (BHCMG, UM1 HG006542 ). R.W.T. is supported by the Wellcome Centre for Mitochondrial Research ( 203105/Z/16/Z ), the Medical Research Council (MRC) International Centre for Genomic Medicine in Neuromuscular Disease , Mitochondrial Disease Patient Cohort (UK) ( G0800674 ), the UK NIHR Biomedical Research Centre for Aging and Age-related disease award to the Newcastle upon Tyne Foundation Hospitals NHS Trust, the MRC/EPSRC Molecular Pathology Node , The Lily Foundation , and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children . The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003). This study makes use of DECIPHER, which is funded by Wellcome. See Nature PMID: 25533962 or https://www.ddduk.org/access.html for full acknowledgment.pre-print, post-print (6 month embargo

    HERC2 deficiency activates C-RAF/MKK3/p38 signalling pathway altering the cellular response to oxidative stress

    Get PDF
    HERC2 gene encodes an E3 ubiquitin ligase involved in several cellular processes by regulating the ubiquitylation of different protein substrates. Biallelic pathogenic sequence variants in the HERC2 gene are associated with HERC2 Angelman-like syndrome. In pathogenic HERC2 variants, complete absence or marked reduction in HERC2 protein levels are observed. The most common pathological variant, c.1781C > T (p.Pro594Leu), encodes an unstable HERC2 protein. A better understanding of how pathologic HERC2 variants affect intracellular signalling may aid definition of potential new therapies for these disorders. For this purpose, we studied patient-derived cells with the HERC2 Pro594Leu variant. We observed alteration of mitogen-activated protein kinase signalling pathways, reflected by increased levels of C-RAF protein and p38 phosphorylation. HERC2 knockdown experiments reproduced the same effects in other human and mouse cells. Moreover, we demonstrated that HERC2 and RAF proteins form molecular complexes, pull-down and proteomic experiments showed that HERC2 regulates C-RAF ubiquitylation and we found out that the p38 activation due to HERC2 depletion occurs in a RAF/MKK3-dependent manner. The displayed cellular response was that patient-derived and other human cells with HERC2 deficiency showed higher resistance to oxidative stress with an increase in the master regulator of the antioxidant response NRF2 and its target genes. This resistance was independent of p53 and abolished by RAF or p38 inhibitors. Altogether, these findings identify the activation of C-RAF/MKK3/p38 signalling pathway in HERC2 Angelman-like syndrome and highlight the inhibition of RAF activity as a potential therapeutic option for individuals affected with these rare diseases

    A large Indian family with rearrangement of chromosome 4p16 and 3p26.3 and divergent clinical presentations

    Get PDF
    BACKGROUND: The deletion of the chromosome 4p16.3 Wolf-Hirschhorn syndrome critical region (WHSCR-2) typically results in a characteristic facial appearance, varying intellectual disability, stereotypies and prenatal onset of growth retardation, while gains of the same chromosomal region result in a more variable degree of intellectual deficit and dysmorphism. Similarly the phenotype of individuals with terminal deletions of distal chromosome 3p (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance.METHODS AND RESULTS: We investigated a large Indian five-generation pedigree with ten affected family members in which chromosomal microarray and fluorescence in situ hybridization analyses disclosed a complex rearrangement involving chromosomal subregions 4p16.1 and 3p26.3 resulting in a 4p16.1 deletion and 3p26.3 microduplication in three individuals, and a 4p16.1 duplication and 3p26.3 microdeletion in seven individuals. A typical clinical presentation of WHS was observed in all three cases with 4p16.1 deletion and 3p26.3 microduplication. Individuals with a 4p16.1 duplication and 3p26.3 microdeletion demonstrated a range of clinical features including typical 3p microdeletion or 4p partial trisomy syndrome to more severe neurodevelopmental delay with distinct dysmorphic features.CONCLUSION: We present the largest pedigree with complex t(4p;3p) chromosomal rearrangements and diverse clinical outcomes including Wolf Hirschorn-, 3p deletion-, and 4p duplication syndrome amongst affected individuals.<br/

    Assessing performance of pathogenicity predictors using clinically relevant variant datasets

    Get PDF
    Background: Pathogenicity predictors are integral to genomic variant interpretation but, despite their widespread usage, an independent validation of performance using a clinically relevant dataset has not been undertaken. Methods: We derive two validation datasets: an 'open' dataset containing variants extracted from publicly available databases, similar to those commonly applied in previous benchmarking exercises, and a 'clinically representative' dataset containing variants identified through research/diagnostic exome and panel sequencing. Using these datasets, we evaluate the performance of three recent meta-predictors, REVEL, GAVIN and ClinPred, and compare their performance against two commonly used in silico tools, SIFT and PolyPhen-2. Results: Although the newer meta-predictors outperform the older tools, the performance of all pathogenicity predictors is substantially lower in the clinically representative dataset. Using our clinically relevant dataset, REVEL performed best with an area under the receiver operating characteristic curve of 0.82. Using a concordance-based approach based on a consensus of multiple tools reduces the performance due to both discordance between tools and false concordance where tools make common misclassification. Analysis of tool feature usage may give an insight into the tool performance and misclassification. Conclusion: Our results support the adoption of meta-predictors over traditional in silico tools, but do not support a consensus-based approach as in current practice.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This work was supported by the Wellcome Trust [WT200990/Z/16/Z] and [WT200990/A/16/Z]published version, submitted versio

    Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans

    Get PDF
    This is the final version. It first appeared at http://www.nature.com/ncomms/2015/150901/ncomms9086/full/ncomms9086.html.Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting.L.E.D. and F.I.R. were supported by the Medical Research Council (MR/J000329/1). J.B., K.B., B.H., L.S. M.B. and T.E. were supported by Bundesministerium fu?r Bildung und Forschung (grant number 01GM1513A and 01GM1513C) and C.T. was supported by an Ipsen Fellowship Grant. The cohort ?Imprinting Disorders-Finding out Why? was accrued through the support of the Newlife Foundation for Disabled Children and through support from the Wessex NIHR clinical research network and NIHR Wellcome Southampton clinical research facility. Funding for DNA collection and methylation analysis of normal control samples was provided in part by the National Institutes of Health R01 AI091905-01, R01 AI061471 and R01 HL082925. ERM thanks Action Medical Research for support
    • …
    corecore