6 research outputs found

    Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes

    No full text
    Grassland biomass is an essential part of the regional carbon cycle. Rapid and accurate estimation of grassland biomass is a hot topic in research on grassland ecosystems. This study was based on field-measured biomass data and satellite remote sensing data from the Moderate resolution imaging spectroradiometer (MODIS). A generalized linear model (GLM) was used to analyze the aboveground biomass (AGB), dynamic changes, and relevance of climatic factors of the typical/desert steppe in Inner Mongolia during the growing seasons from May 2009 to October 2015. The results showed that: (1) The logarithmic function model with the ratio vegetation index (RVI) as the independent variable worked best for the typical steppe area in Inner Mongolia, while the power function model with the normalized differential vegetation index (NDVI) as the independent variable worked best for the desert steppe area. The R2 values at a spatial resolution of 250 m were higher than those at a spatial resolution 500 m. (2) From 2009 to 2015, the highest values of AGB in the typical steppe and desert steppe of Inner Mongolia both appeared in 2012, and were 41.9 Tg and 7.0 Tg, respectively. The lowest values were 30.7 Tg and 5.8 Tg, respectively, in 2009. (3) The overall spatial distribution of AGB decreased from northeast to southwest. It also changed considerably over time. From May to August, AGB at the same longitude increased from south to north with seasonal variations; from August to October, it increased from north to south. (4) A variation partitioning analysis showed that in both the typical steppe and desert steppe, the combined effect of precipitation and temperature contributed the most to the aboveground biomass. The individual effect of temperature contributed more than precipitation in the typical steppe, while the individual effect of precipitation contributed more in the desert steppe. Thus, the hydrothermal dynamic hypothesis was used to explain this pattern. This study provides support for grassland husbandry management and carbon storage assessment in Inner Mongolia

    Nutrient Characteristics in Relation to Plant Size of a Perennial Grass Under Grazing Exclusion in Degraded Grassland

    No full text
    Identifying the linkages between nutrient properties and plant size is important for reducing uncertainty in understanding the mechanisms of plant phenotypic plasticity. Although the positive effects of grazing exclusion on plant morphological plasticity has been well documented, surprisingly little is known about the relationship of nutrient strategies with plant shoot size after long-term grazing exclusion. We experimentally investigated the impacts of grazing exclusion over time (0, 9, 15, and 35 years) on the relationships of nutrient traits (nutrient concentration, allocation, and stoichiometry) of with morphological plasticity in Leymus chinensis, which is a dominant species in grasslands of Inner Mongolia, China. Our results showed that there was a significantly negative correlation between the degrees of plasticity and stability of various morphological traits. Increases in plant size by 126.41, 164.17, and 247.47% were observed with the increase of grazing exclusion time of 9, 15, and 35 years, respectively. Plant size was negatively correlated with nitrogen (N) and phosphorus (P) concentrations, but was positively correlated with carbon (C) concentration. Biomass partitioning and leaf to stem ratios of nutrient concentrations contributed more than 95% of the changes in N, P, and C allocation in L. chinensis leaves and stems induced by grazing exclusions. Nine years’ grazing exclusion rapidly changed the nutrient concentrations (averaged by -34.84%), leaf to stem nutrient allocations (averaged by -86.75%), and ecological stoichiometry (averaged by +46.54%) compared to free-grazing, whereas there was no significant trend of these nutrient traits across the 9, 15, and 35 years’ grazing exclusion in L. chinensis individuals. Our findings suggest that with the increase of the duration of the grazing exclusion, time effects on plant performances gradually weakened both in plant morphological plasticity and nutrient properties. There is a significant negative effect between plant sizes and nutrient traits under long-term grazing exclusion
    corecore